Skip to main content

Utilities for training models in pytorch

Project description

xt-training

Description

This repo contains utilities for training deep learning models in pytorch, developed by Xtract AI.

Installation

From PyPI:

pip install xt-training

From source:

git clone https://github.com/XtractTech/xt-training.git
pip install ./xt-training

Usage

See specific help on a class or function using help. E.g., help(Runner).

Training a model

Using xt-training (High Level)

First, you must define a config file with the necessary items. To generate a template config file, run:

python -m xt_training template path/to/save/dir

To generate template files for nni, add the --nni flag

Instructions for defining a valid config file can be seen at the top of the config file.

After defining a valid config file, you can train your model by running:

python -m xt_training train path/to/config.py /path/to/save_dir

You can test the model by running

python -m xt_training test path/to/config.py /path/to/save_dir
Using Runner (Low Level)

If you want a little more control and want to define the trianing code yourself, you can utilize the Runner like so:

from xt_training import Runner, metrics
from torch.utils.tensorboard import SummaryWriter

# Here, define class instances for the required objects
# model = 
# optimizer = 
# scheduler = 
# loss_fn = 

# Define metrics - each of these will be printed for each iteration
# Either per-batch or running-average values can be printed
batch_metrics = {
    'eps': metrics.EPS(),
    'acc': metrics.Accuracy(),
    'kappa': metrics.Kappa(),
    'cm': metrics.ConfusionMatrix()
}

# Define tensorboard writer
writer = SummaryWriter()

# Create runner
runner = Runner(
    model=model,
    loss_fn=loss_fn,
    optimizer=optimizer,
    scheduler=scheduler,
    batch_metrics=batch_metrics,
    device='cuda:0',
    writer=writer
)

# Define dataset and loaders
# dataset = 
# train_loader = 
# val_loader = 

# Train
model.train()
runner(train_loader)
batch_metrics['cm'].print()

# Evaluate
model.eval()
runner(val_loader)
batch_metrics['cm'].print()

# Print training and evaluation history
print(runner)

Scoring a model

import torch
from xt_training import Runner

# Here, define the model
# model = 
# model.load_state_dict(torch.load(<checkpoint file>))

# Create runner
# (alternatively, can use a fully-specified training runner as in the example above)
runner = Runner(model=model, device='cuda:0')

# Define dataset and loaders
# dataset = 
# test_loader = 

# Score
model.eval()
y_pred, y = runner(test_loader, return_preds=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xt-training-1.11.1.tar.gz (15.8 kB view details)

Uploaded Source

Built Distribution

xt_training-1.11.1-py3-none-any.whl (19.5 kB view details)

Uploaded Python 3

File details

Details for the file xt-training-1.11.1.tar.gz.

File metadata

  • Download URL: xt-training-1.11.1.tar.gz
  • Upload date:
  • Size: 15.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for xt-training-1.11.1.tar.gz
Algorithm Hash digest
SHA256 be0fa1e3d61c162b0fdf33c636e28bd183bf776cb75d17a37a9107b55ac96cea
MD5 9211b9b821fe00b445345558d20fa016
BLAKE2b-256 0563815974e0f2ac340328b487feb60cc640db9ec0394f305936a648cebba808

See more details on using hashes here.

File details

Details for the file xt_training-1.11.1-py3-none-any.whl.

File metadata

  • Download URL: xt_training-1.11.1-py3-none-any.whl
  • Upload date:
  • Size: 19.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for xt_training-1.11.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3d2e7a7a984f266459dec2087e6106234f370ee085f6bd99cef5756f451239ef
MD5 b148ba97b5f1338c4bf92a6e5216895b
BLAKE2b-256 877f55c94b5fd28331aee26f107177210167fabb9b90b8def5aa115b7d3a5650

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page