Skip to main content

Utilities for training models in pytorch

Project description

xt-training

Description

This repo contains utilities for training deep learning models in pytorch, developed by Xtract AI.

Installation

From PyPI:

pip install xt-training

From source:

git clone https://github.com/XtractTech/xt-training.git
pip install ./xt-training

Usage

See specific help on a class or function using help. E.g., help(Runner).

Training a model

from xt_training import Runner, metrics
from torch.utils.tensorboard import SummaryWriter

# Here, define class instances for the required objects
# model = 
# optimizer = 
# scheduler = 
# loss_fn = 

# Define metrics - each of these will be printed for each iteration
# Either per-batch or running-average values can be printed
batch_metrics = {
    'eps': metrics.EPS(),
    'acc': metrics.Accuracy(),
    'kappa': metrics.Kappa(),
    'cm': metrics.ConfusionMatrix()
}

# Define tensorboard writer
writer = SummaryWriter()

# Create runner
runner = Runner(
    model=model,
    loss_fn=loss_fn,
    optimizer=optimizer,
    scheduler=scheduler,
    batch_metrics=batch_metrics,
    device='cuda:0',
    writer=writer
)

# Define dataset and loaders
# dataset = 
# train_loader = 
# val_loader = 

# Train
model.train()
runner(train_loader)
batch_metrics['cm'].print()

# Evaluate
model.eval()
runner(val_loader)
batch_metrics['cm'].print()

# Print training and evaluation history
print(runner)

Scoring a model

import torch
from xt_training import Runner

# Here, define the model
# model = 
# model.load_state_dict(torch.load(<checkpoint file>))

# Create runner
# (alternatively, can use a fully-specified training runner as in the example above)
runner = Runner(model=model, device='cuda:0')

# Define dataset and loaders
# dataset = 
# test_loader = 

# Score
model.eval()
y_pred, y = runner(test_loader, return_preds=True)

Data Sources

[descriptions and links to data]

Dependencies/Licensing

[list of dependencies and their licenses, including data]

References

[list of references]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xt-training-1.6.1.tar.gz (12.4 kB view details)

Uploaded Source

Built Distribution

xt_training-1.6.1-py3-none-any.whl (14.3 kB view details)

Uploaded Python 3

File details

Details for the file xt-training-1.6.1.tar.gz.

File metadata

  • Download URL: xt-training-1.6.1.tar.gz
  • Upload date:
  • Size: 12.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.3

File hashes

Hashes for xt-training-1.6.1.tar.gz
Algorithm Hash digest
SHA256 b3324ff8b11939f30058e781397029be43f8b2695dc478a669b96202f6d08f1a
MD5 46eb6c7cd0425735d685eac7aa107d7b
BLAKE2b-256 1c88724a0b33dc305bb4bf2088ed8dd890ead50bf3007987e720d461d25b762e

See more details on using hashes here.

File details

Details for the file xt_training-1.6.1-py3-none-any.whl.

File metadata

  • Download URL: xt_training-1.6.1-py3-none-any.whl
  • Upload date:
  • Size: 14.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.3

File hashes

Hashes for xt_training-1.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f6a01a5d5e1258e3f43ed67b9f21df7a1037cb8b6ca663565b694f52734cc1f0
MD5 f42a6b1fee5bfbcb4c5ea3653d11cec2
BLAKE2b-256 6a16a2c7e1ff110a5ce2a79e4a9dddcdf2c10ab6e390ab6d818f580533d5d52f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page