Skip to main content

Utilities for training models in pytorch

Project description

xt-training

Description

This repo contains utilities for training deep learning models in pytorch, developed by Xtract AI.

Installation

From PyPI:

pip install xt-training

From source:

git clone https://github.com/XtractTech/xt-training.git
pip install ./xt-training

Usage

See specific help on a class or function using help. E.g., help(Runner).

Training a model

from xt_training import Runner, metrics
from torch.utils.tensorboard import SummaryWriter

# Here, define class instances for the required objects
# model = 
# optimizer = 
# scheduler = 
# loss_fn = 

# Define metrics - each of these will be printed for each iteration
# Either per-batch or running-average values can be printed
batch_metrics = {
    'eps': metrics.EPS(),
    'acc': metrics.Accuracy(),
    'kappa': metrics.Kappa(),
    'cm': metrics.ConfusionMatrix()
}

# Define tensorboard writer
writer = SummaryWriter()

# Create runner
runner = Runner(
    model=model,
    loss_fn=loss_fn,
    optimizer=optimizer,
    scheduler=scheduler,
    batch_metrics=batch_metrics,
    device='cuda:0',
    writer=writer
)

# Define dataset and loaders
# dataset = 
# train_loader = 
# val_loader = 

# Train
model.train()
runner(train_loader)
batch_metrics['cm'].print()

# Evaluate
model.eval()
runner(val_loader)
batch_metrics['cm'].print()

# Print training and evaluation history
print(runner)

Scoring a model

import torch
from xt_training import Runner

# Here, define the model
# model = 
# model.load_state_dict(torch.load(<checkpoint file>))

# Create runner
# (alternatively, can use a fully-specified training runner as in the example above)
runner = Runner(model=model, device='cuda:0')

# Define dataset and loaders
# dataset = 
# test_loader = 

# Score
model.eval()
y_pred, y = runner(test_loader, return_preds=True)

Data Sources

[descriptions and links to data]

Dependencies/Licensing

[list of dependencies and their licenses, including data]

References

[list of references]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xt-training-1.6.2.tar.gz (12.4 kB view details)

Uploaded Source

Built Distribution

xt_training-1.6.2-py3-none-any.whl (14.3 kB view details)

Uploaded Python 3

File details

Details for the file xt-training-1.6.2.tar.gz.

File metadata

  • Download URL: xt-training-1.6.2.tar.gz
  • Upload date:
  • Size: 12.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.3

File hashes

Hashes for xt-training-1.6.2.tar.gz
Algorithm Hash digest
SHA256 3fd1ccc0014c7c198d604605a340510ff7e438137e6ba4f5bc4a79649ccbef0d
MD5 d021e415e563b0b3bde756969543ca80
BLAKE2b-256 69badca3b6b2bbaeb843f2c950211a11a8f05576cbb8c02e5b4821491eca1ad5

See more details on using hashes here.

File details

Details for the file xt_training-1.6.2-py3-none-any.whl.

File metadata

  • Download URL: xt_training-1.6.2-py3-none-any.whl
  • Upload date:
  • Size: 14.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.3

File hashes

Hashes for xt_training-1.6.2-py3-none-any.whl
Algorithm Hash digest
SHA256 c7c956df9d615ea40d27fa139ada2a9bfe245d5b5605c71cfbe0d873c89be434
MD5 88af9cbc53441ada4e2cfa719bc36934
BLAKE2b-256 0d51569ad16bb0e096a37795b0ab026c4d8a0fe06942bc1f00cb30a3a5e9e89f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page