Skip to main content

Utilities for training models in pytorch

Project description

xt-training

Description

This repo contains utilities for training deep learning models in pytorch, developed by Xtract AI.

Installation

From PyPI:

pip install xt-training

From source:

git clone https://github.com/XtractTech/xt-training.git
pip install ./xt-training

Usage

See specific help on a class or function using help. E.g., help(Runner).

Training a model

from xt_training import Runner, metrics
from torch.utils.tensorboard import SummaryWriter

# Here, define class instances for the required objects
# model = 
# optimizer = 
# scheduler = 
# loss_fn = 

# Define metrics - each of these will be printed for each iteration
# Either per-batch or running-average values can be printed
batch_metrics = {
    'eps': metrics.EPS(),
    'acc': metrics.Accuracy(),
    'kappa': metrics.Kappa(),
    'cm': metrics.ConfusionMatrix()
}

# Define tensorboard writer
writer = SummaryWriter()

# Create runner
runner = Runner(
    model=model,
    loss_fn=loss_fn,
    optimizer=optimizer,
    scheduler=scheduler,
    batch_metrics=batch_metrics,
    device='cuda:0',
    writer=writer
)

# Define dataset and loaders
# dataset = 
# train_loader = 
# val_loader = 

# Train
model.train()
runner(train_loader)
batch_metrics['cm'].print()

# Evaluate
model.eval()
runner(val_loader)
batch_metrics['cm'].print()

# Print training and evaluation history
print(runner)

Scoring a model

import torch
from xt_training import Runner

# Here, define the model
# model = 
# model.load_state_dict(torch.load(<checkpoint file>))

# Create runner
# (alternatively, can use a fully-specified training runner as in the example above)
runner = Runner(model=model, device='cuda:0')

# Define dataset and loaders
# dataset = 
# test_loader = 

# Score
model.eval()
y_pred, y = runner(test_loader, return_preds=True)

Data Sources

[descriptions and links to data]

Dependencies/Licensing

[list of dependencies and their licenses, including data]

References

[list of references]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xt-training-1.7.0.tar.gz (12.5 kB view details)

Uploaded Source

Built Distribution

xt_training-1.7.0-py3-none-any.whl (14.5 kB view details)

Uploaded Python 3

File details

Details for the file xt-training-1.7.0.tar.gz.

File metadata

  • Download URL: xt-training-1.7.0.tar.gz
  • Upload date:
  • Size: 12.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.3

File hashes

Hashes for xt-training-1.7.0.tar.gz
Algorithm Hash digest
SHA256 70d8d17508ef9655e83ed6d7b426b5a6eff99a18a405cf4e5db79084300861d2
MD5 04fa6dc775b48254bc3301d8af500d09
BLAKE2b-256 4fbc4661371b056d4e15c1d96a2911e08c47ff2a2341ca8fb8fc40f7f9fbd5cd

See more details on using hashes here.

File details

Details for the file xt_training-1.7.0-py3-none-any.whl.

File metadata

  • Download URL: xt_training-1.7.0-py3-none-any.whl
  • Upload date:
  • Size: 14.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.3

File hashes

Hashes for xt_training-1.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 32ac2dcf7828cdf04320a273b585d7beddadcddea388cd97845fef144117bc35
MD5 f53e59fc52026f2ab7ba7bc7fd5fd11d
BLAKE2b-256 1582fe966e8566e90f9e790ee954b0d046fd07289aec295f7897d9bdfe7e7fed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page