Skip to main content

Utilities for training models in pytorch

Project description

xt-training

Description

This repo contains utilities for training deep learning models in pytorch, developed by Xtract AI.

Installation

From PyPI:

pip install xt-training

From source:

git clone https://github.com/XtractTech/xt-training.git
pip install ./xt-training

Usage

See specific help on a class or function using help. E.g., help(Runner).

Training a model

Using xt-training (High Level)

First, you must define a config file with the necessary items. To generate a template config file, run:

python -m xt_training template path/to/save/dir

To generate template files for nni, add the --nni flag

Instructions for defining a valid config file can be seen at the top of the config file.

After defining a valid config file, you can train your model by running:

python -m xt_training train path/to/config.py /path/to/save_dir

You can test the model by running

python -m xt_training test path/to/config.py /path/to/save_dir
Using Runner (Low Level)

If you want a little more control and want to define the trianing code yourself, you can utilize the Runner like so:

from xt_training import Runner, metrics
from torch.utils.tensorboard import SummaryWriter

# Here, define class instances for the required objects
# model = 
# optimizer = 
# scheduler = 
# loss_fn = 

# Define metrics - each of these will be printed for each iteration
# Either per-batch or running-average values can be printed
batch_metrics = {
    'eps': metrics.EPS(),
    'acc': metrics.Accuracy(),
    'kappa': metrics.Kappa(),
    'cm': metrics.ConfusionMatrix()
}

# Define tensorboard writer
writer = SummaryWriter()

# Create runner
runner = Runner(
    model=model,
    loss_fn=loss_fn,
    optimizer=optimizer,
    scheduler=scheduler,
    batch_metrics=batch_metrics,
    device='cuda:0',
    writer=writer
)

# Define dataset and loaders
# dataset = 
# train_loader = 
# val_loader = 

# Train
model.train()
runner(train_loader)
batch_metrics['cm'].print()

# Evaluate
model.eval()
runner(val_loader)
batch_metrics['cm'].print()

# Print training and evaluation history
print(runner)

Scoring a model

import torch
from xt_training import Runner

# Here, define the model
# model = 
# model.load_state_dict(torch.load(<checkpoint file>))

# Create runner
# (alternatively, can use a fully-specified training runner as in the example above)
runner = Runner(model=model, device='cuda:0')

# Define dataset and loaders
# dataset = 
# test_loader = 

# Score
model.eval()
y_pred, y = runner(test_loader, return_preds=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xt-training-2.0.1.tar.gz (17.1 kB view details)

Uploaded Source

Built Distribution

xt_training-2.0.1-py3-none-any.whl (21.0 kB view details)

Uploaded Python 3

File details

Details for the file xt-training-2.0.1.tar.gz.

File metadata

  • Download URL: xt-training-2.0.1.tar.gz
  • Upload date:
  • Size: 17.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.6

File hashes

Hashes for xt-training-2.0.1.tar.gz
Algorithm Hash digest
SHA256 da9bf777657a36cc42484d05b8b373e101425f1f3e8192a8f837f8d364ac6724
MD5 d8c3f9a84aa3d944ff3a1321fc7dd070
BLAKE2b-256 4e1a1cf1ae01741d60eaf195e88ba151e92684d92c9ec1357eefde2e593ba5f7

See more details on using hashes here.

File details

Details for the file xt_training-2.0.1-py3-none-any.whl.

File metadata

  • Download URL: xt_training-2.0.1-py3-none-any.whl
  • Upload date:
  • Size: 21.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.6

File hashes

Hashes for xt_training-2.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3efb2ff0ac8c1c2a607b2aade1e0ab722aa5c7cf94fe53542101d8cd03f8e7df
MD5 82055452555aa5b6702e6839476cc83e
BLAKE2b-256 1ae73638f48c701e11e5f1708c6a7f3f6a52ce812d9743dd56e0abd5faa9189b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page