Skip to main content

Utilities for training models in pytorch

Project description

xt-training

Description

This repo contains utilities for training deep learning models in pytorch, developed by Xtract AI.

Installation

From PyPI:

pip install xt-training

From source:

git clone https://github.com/XtractTech/xt-training.git
pip install ./xt-training

Usage

See specific help on a class or function using help. E.g., help(Runner).

Training a model

Using xt-training (High Level)

First, you must define a config file with the necessary items. To generate a template config file, run:

python -m xt_training template path/to/save/dir

To generate template files for nni, add the --nni flag

Instructions for defining a valid config file can be seen at the top of the config file.

After defining a valid config file, you can train your model by running:

python -m xt_training train path/to/config.py /path/to/save_dir

You can test the model by running

python -m xt_training test path/to/config.py /path/to/save_dir
Using functional train (Middle Level)

As of version >=2.0.0, xt-training has functional calls for the train and test functions This is useful if you want to run other code after training, or want any values/metrics returned after training. This can be called like so:

from xt_training.utils import functional

# model = 
# train_loader = 
# optimizer = 
# scheduler = 
# loss_fn = 
# metrics = 
# epochs = 
# save_dir = 
def on_exit(test_loaders, runner, save_dir, model):
    # Do what you want after training.
    # As of version >=2.0.0. whatever gets returned here will get returned from the functional call
    return runner, model

runner, model = functional.train(
    save_dir,
    train_loader,
    model,
    optimizer,
    epochs,
    loss_fn,
    val_loader=None,
    test_loaders=None,
    scheduler=scheduler,
    is_batch_scheduler=False, # Whether or not to run scheduler.step() every epoch or every step
    eval_metrics=metrics,
    tokenizer=None,
    on_exit=train_exit,
    use_nni=False
)

# Do something after with runner and/or model...

A similar functional call exists for test.

Using Runner (Low Level)

If you want a little more control and want to define the trianing code yourself, you can utilize the Runner like so:

from xt_training import Runner, metrics
from torch.utils.tensorboard import SummaryWriter

# Here, define class instances for the required objects
# model = 
# optimizer = 
# scheduler = 
# loss_fn = 

# Define metrics - each of these will be printed for each iteration
# Either per-batch or running-average values can be printed
batch_metrics = {
    'eps': metrics.EPS(),
    'acc': metrics.Accuracy(),
    'kappa': metrics.Kappa(),
    'cm': metrics.ConfusionMatrix()
}

# Define tensorboard writer
writer = SummaryWriter()

# Create runner
runner = Runner(
    model=model,
    loss_fn=loss_fn,
    optimizer=optimizer,
    scheduler=scheduler,
    batch_metrics=batch_metrics,
    device='cuda:0',
    writer=writer
)

# Define dataset and loaders
# dataset = 
# train_loader = 
# val_loader = 

# Train
model.train()
runner(train_loader)
batch_metrics['cm'].print()

# Evaluate
model.eval()
runner(val_loader)
batch_metrics['cm'].print()

# Print training and evaluation history
print(runner)

Scoring a model

import torch
from xt_training import Runner

# Here, define the model
# model = 
# model.load_state_dict(torch.load(<checkpoint file>))

# Create runner
# (alternatively, can use a fully-specified training runner as in the example above)
runner = Runner(model=model, device='cuda:0')

# Define dataset and loaders
# dataset = 
# test_loader = 

# Score
model.eval()
y_pred, y = runner(test_loader, return_preds=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xt-training-2.4.3a1.tar.gz (19.2 kB view details)

Uploaded Source

Built Distribution

xt_training-2.4.3a1-py3-none-any.whl (22.8 kB view details)

Uploaded Python 3

File details

Details for the file xt-training-2.4.3a1.tar.gz.

File metadata

  • Download URL: xt-training-2.4.3a1.tar.gz
  • Upload date:
  • Size: 19.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for xt-training-2.4.3a1.tar.gz
Algorithm Hash digest
SHA256 e92f9a6b26bb5a01f0f105c56c35a484bf4118b1520c82cc35a169dec5b0d806
MD5 51fe328100dbe3170680eb969b6d1ee0
BLAKE2b-256 d9e7211dcef79d88d2c3385bd9ed35228a6427a73ff880423757f6db90a1e199

See more details on using hashes here.

File details

Details for the file xt_training-2.4.3a1-py3-none-any.whl.

File metadata

  • Download URL: xt_training-2.4.3a1-py3-none-any.whl
  • Upload date:
  • Size: 22.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for xt_training-2.4.3a1-py3-none-any.whl
Algorithm Hash digest
SHA256 53c4cbc1f717eb8d0b706b0996a1a24875bfea12d25df0fc8f1ed4ab085be84d
MD5 13f816fc9a6bad466b4e8181992021df
BLAKE2b-256 ad559bcacba3989096f37257ac12d9987be0bffb48fb0493cc89786722fb3d88

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page