Skip to main content

yet another datagram

Project description

DOI Documentation PyPi version Github link Github status

yet another datagram

A set of tools to extract raw data from scientific instruments into standardised DataTree in-memory objects, or into NetCDF files on disk. The resulting data is annotated with metadata, provenance information, timestamps, units, and uncertainties. Currently developed at the ConCat lab at Technische Universität Berlin (Berlin, DE) and the Materials for Energy Conversion lab at Empa (Dübendorf, CH).

Capabilities:

  • Extraction of chromatography data from gas and liquid chromatograms. Supports several Agilent, EZChrom, Masshunter, and Fusion formats.
  • Extraction of electrochemical data from electrochemistry and battery cycling experiments. Supports BioLogic file formats.
  • Extraction of reflection coefficient traces from network analysers. Supports the Touchstone file format.
  • Extraction of spectroscopy files including common XPS, XRD and MS formats.
  • Extraction of tabulated data using CSV parsing functionality, including Bronkhorst and DryCal output formats.

Additionally, data from multiple files of the same type, or even of different types, can be easily and reproducibly combined into a single DataTree by using process and preset modes of yadg.

Features:

  • timezone-aware timestamp processing using Unix timestamps
  • locale-aware processing of files
  • automatic uncertainty determination using data contained in the raw files, instrument specification, or last significant digit
  • tagging of all data with units
  • annotation with processing metadata (such as provenance or extraction date) under the yadg_⋅⋅⋅ namespace
  • original metadata from the extracted files is stored under original_metadata
  • extensive dataschema validation using provided specifications

The full list of capabilities and features is listed in the project documentation.

Installation:

The released versions of yadg are available on the Python Package Index (PyPI) under yadg. Those can be installed using:

pip install yadg

If you wish to install the current development version as an editable installation, check out the main branch using git, and install yadg as an editable package using pip:

git clone git@github.com:dgbowl/yadg.git
cd yadg
pip install -e .

Additional targets yadg[testing] and yadg[docs] are available and can be specified in the above commands, if testing and/or documentation capabilities are required.

Usage:

After installing yadg, you can extract data from single files of known filetypes using:

yadg extract <filetype> <infile> [outfile]

This will write the data extracted from the infile into a NetCDF file called outfile. An example usage for BioLogic MPR files would be:

yadg extract eclab.mpr example_file.mpr output_file.nc

Alternatively, you can obtain a DataTree object in Python via:

import yadg
yadg.extractors.extract(filetype=<filetype>, path=<infile>)

More detailed usage instructions are available in the project documentation.

Contributors:

Acknowledgements

This project has received funding from the following sources:

  • European Union’s Horizon 2020 programme under grant agreement No 957189.
  • DFG's Emmy Noether Programme under grant number 490703766.

The project is also part of BATTERY 2030+, the large-scale European research initiative for inventing the sustainable batteries of the future.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yadg-6.0.tar.gz (93.5 kB view details)

Uploaded Source

Built Distribution

yadg-6.0-py3-none-any.whl (110.2 kB view details)

Uploaded Python 3

File details

Details for the file yadg-6.0.tar.gz.

File metadata

  • Download URL: yadg-6.0.tar.gz
  • Upload date:
  • Size: 93.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.13.0

File hashes

Hashes for yadg-6.0.tar.gz
Algorithm Hash digest
SHA256 bde22df5053b33a6adc200ddd14ea189ed200c2cf885e3f47dbb272bd1eabfab
MD5 7ec16d2a89b8860a423ffd6f9f3fdc6e
BLAKE2b-256 ecc86c77296ac831f10f1422611dfb4e72b992ee1858de7438518d3f39f0157b

See more details on using hashes here.

File details

Details for the file yadg-6.0-py3-none-any.whl.

File metadata

  • Download URL: yadg-6.0-py3-none-any.whl
  • Upload date:
  • Size: 110.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.13.0

File hashes

Hashes for yadg-6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 29d2b8ca760d5f4a7f4399b5ac85650e85ef1fb6b47cf6373eaf10646d0f4057
MD5 c8b5d89cf7050b190454398e90c46c4a
BLAKE2b-256 34c514b662b1c7cea40a55f3e88d8e4513ac0e9a16acb0175f7a1a34755fb1ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page