Skip to main content

yet another datagram

Project description

DOI Documentation PyPi version Github link Github status

yet another datagram

A set of tools to extract raw data from scientific instruments into standardised DataTree in-memory objects, or into NetCDF files on disk. The resulting data is annotated with metadata, provenance information, timestamps, units, and uncertainties. Currently developed at the ConCat lab at Technische Universität Berlin (Berlin, DE) and the Materials for Energy Conversion lab at Empa (Dübendorf, CH).

Capabilities:

  • Extraction of chromatography data from gas and liquid chromatograms. Supports several Agilent, EZChrom, Masshunter, and Fusion formats.
  • Extraction of electrochemical data from electrochemistry and battery cycling experiments. Supports BioLogic file formats.
  • Extraction of reflection coefficient traces from network analysers. Supports the Touchstone file format.
  • Extraction of spectroscopy files including common XPS, XRD and MS formats.
  • Extraction of tabulated data using CSV parsing functionality, including Bronkhorst and DryCal output formats.

Additionally, data from multiple files of the same type, or even of different types, can be easily and reproducibly combined into a single DataTree by using process and preset modes of yadg.

Features:

  • timezone-aware timestamp processing using Unix timestamps
  • locale-aware processing of files
  • automatic uncertainty determination using data contained in the raw files, instrument specification, or last significant digit
  • tagging of all data with units
  • annotation with processing metadata (such as provenance or extraction date) under the yadg_⋅⋅⋅ namespace
  • original metadata from the extracted files is stored under original_metadata
  • extensive dataschema validation using provided specifications

The full list of capabilities and features is listed in the project documentation.

Installation:

The released versions of yadg are available on the Python Package Index (PyPI) under yadg. Those can be installed using:

    pip install yadg

If you wish to install the current development version as an editable installation, check out the master branch using git, and install yadg as an editable package using pip:

   git clone git@github.com:dgbowl/yadg.git
   cd yadg
   pip install -e .

Additional targets yadg[testing] and yadg[docs] are available and can be specified in the above commands, if testing and/or documentation capabilities are required.

Contributors:

Acknowledgements

This project has received funding from the following sources:

  • European Union’s Horizon 2020 programme under grant agreement No 957189.
  • DFG's Emmy Noether Programme under grant number 490703766.

The project is also part of BATTERY 2030+, the large-scale European research initiative for inventing the sustainable batteries of the future.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yadg-5.1.7.tar.gz (92.9 kB view details)

Uploaded Source

Built Distribution

yadg-5.1.7-py3-none-any.whl (109.3 kB view details)

Uploaded Python 3

File details

Details for the file yadg-5.1.7.tar.gz.

File metadata

  • Download URL: yadg-5.1.7.tar.gz
  • Upload date:
  • Size: 92.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.13.0

File hashes

Hashes for yadg-5.1.7.tar.gz
Algorithm Hash digest
SHA256 624d2454750d066297094e84a7914e5b90e7af2f0c432ef50cb814ba275f872d
MD5 65acdbc4365af1f1ed9100d3464f6191
BLAKE2b-256 160eae643832eafc2dc09f7c17005631927fc5355dc633e00386061ea438b1a9

See more details on using hashes here.

File details

Details for the file yadg-5.1.7-py3-none-any.whl.

File metadata

  • Download URL: yadg-5.1.7-py3-none-any.whl
  • Upload date:
  • Size: 109.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.13.0

File hashes

Hashes for yadg-5.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 e92b2695e4ec7691b51fdc48b2ec11a015491628ad669a9882b12d007d547562
MD5 879c0bc40b7920e053276e9cc0d9d149
BLAKE2b-256 9b278618ccea0d251a1c5b55f6fdbb35fae5aa84210b8acf8da44e12310173f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page