Skip to main content

Yet Another Deep Learning Lab. Ultra light Deep Learning framework based on Theano

Project description

https://travis-ci.org/pchavanne/yadll.svg https://coveralls.io/repos/github/pchavanne/yadll/badge.svg?branch=master https://img.shields.io/badge/license-MIT-blue.svg https://readthedocs.org/projects/yadll/badge/

Yadll

Yet another deep learning lab.

This is an ultra light deep learning framework written in Python and based on Theano. It allows you to very quickly start building Deep Learning models and play with toy examples.

If you are looking for a light deep learning API I would recommend using Lasagne or keras instead of yadll, both are mature, well documented and contributed projects.

Read the documentation at Read the doc

Its main features are:

  • Layers:

    • Input Layer

    • Dropout Layer

    • Pool Layer

    • Conv Layer:

      • ConvPool Layer

    • Dense Layer:

      • Logistic Regression

      • Dropconnect

      • Unsupervised Layer:

        • Autoencoder (denoising autoencoder)

        • Restricted Boltzmann Machine

    • RNN

    • LSTM

    • GRU

  • Optimisation:

    • Sgd

    • Momentum

    • Nesterov momentum

    • Adagrad

    • Adadelta

    • Rmsprop

    • Adam

    • Adamax

  • Hyperparameters grid search

Installation

git clone git@github.com:pchavanne/yadll.git
cd yadll
pip install -e .

Example

Different networks tested on mnist:

  • Logisitic Regression

  • Multi Layer Perceptron

  • MLP with dropout

  • MLP with dropconnect

  • Conv Pool

  • LeNet-5

  • Autoencoder

  • Denoising Autoencoder

  • Gaussian Denoising Autoencoder

  • Contractive Denoising Autoencoder

  • Stacked Denoising Autoencoder

  • Restricted Boltzmann Machine

  • Deep Belief Network

  • Recurrent Neural Networks

  • Long Short-Term Memory

  • Gated Recurrent unit

get the list of available networks:

python mnist_dl.py --network_list

trainning a model for example lenet5:

python mnist_dl.py lenet5

grid search on the hyperparameters:

python hp_grid_search.py

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yadll-0.0.1.tar.gz (48.9 kB view details)

Uploaded Source

File details

Details for the file yadll-0.0.1.tar.gz.

File metadata

  • Download URL: yadll-0.0.1.tar.gz
  • Upload date:
  • Size: 48.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for yadll-0.0.1.tar.gz
Algorithm Hash digest
SHA256 f5ef1c4b49e9395098797bfe19c3f962e21894292143fd04207412a41b5b99d2
MD5 29ecf4089dcddcb00d79d715bcd5a843
BLAKE2b-256 6785ae7098967c3fac24ed3daf5c2c595af412ea1fc24d30f7005b60bf9a4618

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page