Skip to main content

A powerful financial data module used for pulling both fundamental and technical data from Yahoo Finance

Project description

A python module that returns stock, cryptocurrency, forex, mutual fund, commodity futures, ETF, and US Treasury financial data from Yahoo Finance.

https://github.com/JECSand/yahoofinancials/actions/workflows/test.yml/badge.svg?branch=master https://static.pepy.tech/badge/yahoofinancials https://static.pepy.tech/badge/yahoofinancials/month https://static.pepy.tech/badge/yahoofinancials/week

Current Version: v1.13

Version Released: 02/14/2023

Report any bugs by opening an issue here: https://github.com/JECSand/yahoofinancials/issues

Overview

A powerful financial data module used for pulling both fundamental and technical data from Yahoo Finance.

  • As of Version 1.9, YahooFinancials supports optional parameters for asynchronous execution, proxies, and international requests.

from yahoofinancials import YahooFinancials
tickers = ['AAPL', 'GOOG', 'C']
yahoo_financials = YahooFinancials(tickers, concurrent=True, max_workers=8, country="US")
balance_sheet_data_qt = yahoo_financials.get_financial_stmts('quarterly', 'balance')
print(balance_sheet_data_qt)

proxy_addresses = [ "mysuperproxy.com:5000", "mysuperproxy.com:5001"]
yahoo_financials = YahooFinancials(tickers, concurrent=True, proxies=proxy_addresses)
balance_sheet_data_qt = yahoo_financials.get_financial_stmts('quarterly', 'balance')
print(balance_sheet_data_qt)
  • New methods in Version 1.13:
    • get_esg_score_data()

Installation

  • yahoofinancials runs on Python 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11.

  • This package depends on beautifulsoup4, pytz, requests, and cryptography to work.

  1. Installation using pip:

  • Linux/Mac:

$ pip install yahoofinancials
  • Windows (If python doesn’t work for you in cmd, try running the following command with just py):

> python -m pip install yahoofinancials
  1. Installation using github (Mac/Linux):

$ git clone https://github.com/JECSand/yahoofinancials.git
$ cd yahoofinancials
$ python setup.py install
  1. Demo using the included demo script:

$ cd yahoofinancials
$ python demo.py -h
$ python demo.py
$ python demo.py WFC C BAC
  1. Test using the included unit testing script:

$ cd yahoofinancials
$ python test/test_yahoofinancials.py

Module Methods

  • The financial data from all methods is returned as JSON.

  • You can run multiple symbols at once using an inputted array or run an individual symbol using an inputted string.

  • YahooFinancials works with Python 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11 and runs on all operating systems. (Windows, Mac, Linux).

Additional Module Methods

  • get_daily_dividend_data(start_date, end_date)

  • get_stock_profile_data()

  • get_financial_data()

  • get_interest_expense()

  • get_operating_income()

  • get_total_operating_expense()

  • get_total_revenue()

  • get_cost_of_revenue()

  • get_income_before_tax()

  • get_income_tax_expense()

  • get_gross_profit()

  • get_net_income_from_continuing_ops()

  • get_research_and_development()

  • get_current_price()

  • get_current_change()

  • get_current_percent_change()

  • get_current_volume()

  • get_prev_close_price()

  • get_open_price()

  • get_ten_day_avg_daily_volume()

  • get_three_month_avg_daily_volume()

  • get_stock_exchange()

  • get_market_cap()

  • get_daily_low()

  • get_daily_high()

  • get_currency()

  • get_yearly_high()

  • get_yearly_low()

  • get_dividend_yield()

  • get_annual_avg_div_yield()

  • get_five_yr_avg_div_yield()

  • get_dividend_rate()

  • get_annual_avg_div_rate()

  • get_50day_moving_avg()

  • get_200day_moving_avg()

  • get_beta()

  • get_payout_ratio()

  • get_pe_ratio()

  • get_price_to_sales()

  • get_exdividend_date()

  • get_book_value()

  • get_ebit()

  • get_net_income()

  • get_earnings_per_share()

  • get_key_statistics_data()

  • get_stock_profile_data()

  • get_financial_data()

Usage Examples

  • The class constructor can take either a single ticker or a list of tickers as it’s parameter.

  • This makes it easy to initiate multiple classes for different groupings of financial assets.

  • Quarterly statement data returns the last 4 periods of data, while annual returns the last 3.

Single Ticker Example

from yahoofinancials import YahooFinancials

ticker = 'AAPL'
yahoo_financials = YahooFinancials(ticker)

balance_sheet_data_qt = yahoo_financials.get_financial_stmts('quarterly', 'balance')
income_statement_data_qt = yahoo_financials.get_financial_stmts('quarterly', 'income')
all_statement_data_qt =  yahoo_financials.get_financial_stmts('quarterly', ['income', 'cash', 'balance'])
apple_earnings_data = yahoo_financials.get_stock_earnings_data()
apple_net_income = yahoo_financials.get_net_income()
historical_stock_prices = yahoo_financials.get_historical_price_data('2008-09-15', '2018-09-15', 'weekly')

Lists of Tickers Example

from yahoofinancials import YahooFinancials

tech_stocks = ['AAPL', 'MSFT', 'INTC']
bank_stocks = ['WFC', 'BAC', 'C']
commodity_futures = ['GC=F', 'SI=F', 'CL=F']
cryptocurrencies = ['BTC-USD', 'ETH-USD', 'XRP-USD']
currencies = ['EURUSD=X', 'JPY=X', 'GBPUSD=X']
mutual_funds = ['PRLAX', 'QASGX', 'HISFX']
us_treasuries = ['^TNX', '^IRX', '^TYX']

yahoo_financials_tech = YahooFinancials(tech_stocks)
yahoo_financials_banks = YahooFinancials(bank_stocks)
yahoo_financials_commodities = YahooFinancials(commodity_futures)
yahoo_financials_cryptocurrencies = YahooFinancials(cryptocurrencies)
yahoo_financials_currencies = YahooFinancials(currencies)
yahoo_financials_mutualfunds = YahooFinancials(mutual_funds)
yahoo_financials_treasuries = YahooFinancials(us_treasuries)

tech_cash_flow_data_an = yahoo_financials_tech.get_financial_stmts('annual', 'cash')
bank_cash_flow_data_an = yahoo_financials_banks.get_financial_stmts('annual', 'cash')

banks_net_ebit = yahoo_financials_banks.get_ebit()
tech_stock_price_data = yahoo_financials_tech.get_stock_price_data()
daily_bank_stock_prices = yahoo_financials_banks.get_historical_price_data('2008-09-15', '2018-09-15', 'daily')
daily_commodity_prices = yahoo_financials_commodities.get_historical_price_data('2008-09-15', '2018-09-15', 'daily')
daily_crypto_prices = yahoo_financials_cryptocurrencies.get_historical_price_data('2008-09-15', '2018-09-15', 'daily')
daily_currency_prices = yahoo_financials_currencies.get_historical_price_data('2008-09-15', '2018-09-15', 'daily')
daily_mutualfund_prices = yahoo_financials_mutualfunds.get_historical_price_data('2008-09-15', '2018-09-15', 'daily')
daily_treasury_prices = yahoo_financials_treasuries.get_historical_price_data('2008-09-15', '2018-09-15', 'daily')

Examples of Returned JSON Data

  1. Annual Income Statement Data for Apple:

yahoo_financials = YahooFinancials('AAPL')
print(yahoo_financials.get_financial_stmts('annual', 'income'))
{
    "incomeStatementHistory": {
        "AAPL": [
            {
                "2016-09-24": {
                    "minorityInterest": null,
                    "otherOperatingExpenses": null,
                    "netIncomeFromContinuingOps": 45687000000,
                    "totalRevenue": 215639000000,
                    "totalOtherIncomeExpenseNet": 1348000000,
                    "discontinuedOperations": null,
                    "incomeTaxExpense": 15685000000,
                    "extraordinaryItems": null,
                    "grossProfit": 84263000000,
                    "netIncome": 45687000000,
                    "sellingGeneralAdministrative": 14194000000,
                    "interestExpense": null,
                    "costOfRevenue": 131376000000,
                    "researchDevelopment": 10045000000,
                    "netIncomeApplicableToCommonShares": 45687000000,
                    "effectOfAccountingCharges": null,
                    "incomeBeforeTax": 61372000000,
                    "otherItems": null,
                    "operatingIncome": 60024000000,
                    "ebit": 61372000000,
                    "nonRecurring": null,
                    "totalOperatingExpenses": 0
                }
            }
        ]
    }
}
  1. Annual Balance Sheet Data for Apple:

yahoo_financials = YahooFinancials('AAPL')
print(yahoo_financials.get_financial_stmts('annual', 'balance'))
{
    "balanceSheetHistory": {
        "AAPL": [
            {
                "2016-09-24": {
                    "otherCurrentLiab": 8080000000,
                    "otherCurrentAssets": 8283000000,
                    "goodWill": 5414000000,
                    "shortTermInvestments": 46671000000,
                    "longTermInvestments": 170430000000,
                    "cash": 20484000000,
                    "netTangibleAssets": 119629000000,
                    "totalAssets": 321686000000,
                    "otherLiab": 36074000000,
                    "totalStockholderEquity": 128249000000,
                    "inventory": 2132000000,
                    "retainedEarnings": 96364000000,
                    "intangibleAssets": 3206000000,
                    "totalCurrentAssets": 106869000000,
                    "otherStockholderEquity": 634000000,
                    "shortLongTermDebt": 11605000000,
                    "propertyPlantEquipment": 27010000000,
                    "deferredLongTermLiab": 2930000000,
                    "netReceivables": 29299000000,
                    "otherAssets": 8757000000,
                    "longTermDebt": 75427000000,
                    "totalLiab": 193437000000,
                    "commonStock": 31251000000,
                    "accountsPayable": 59321000000,
                    "totalCurrentLiabilities": 79006000000
                }
            }
        ]
    }
}
  1. Quarterly Cash Flow Statement Data for Citigroup:

yahoo_financials = YahooFinancials('C')
print(yahoo_financials.get_financial_stmts('quarterly', 'cash'))
{
    "cashflowStatementHistoryQuarterly": {
        "C": [
            {
                "2017-06-30": {
                    "totalCashFromOperatingActivities": -18505000000,
                    "effectOfExchangeRate": -117000000,
                    "totalCashFromFinancingActivities": 39798000000,
                    "netIncome": 3872000000,
                    "dividendsPaid": -760000000,
                    "salePurchaseOfStock": -1781000000,
                    "capitalExpenditures": -861000000,
                    "changeToLiabilities": -7626000000,
                    "otherCashflowsFromInvestingActivities": 82000000,
                    "totalCashflowsFromInvestingActivities": -22508000000,
                    "netBorrowings": 33586000000,
                    "depreciation": 901000000,
                    "changeInCash": -1332000000,
                    "changeToNetincome": 1444000000,
                    "otherCashflowsFromFinancingActivities": 8753000000,
                    "changeToOperatingActivities": -17096000000,
                    "investments": -23224000000
                }
            }
        ]
    }
}
  1. Monthly Historical Stock Price Data for Wells Fargo:

yahoo_financials = YahooFinancials('WFC')
print(yahoo_financials.get_historical_price_data("2018-07-10", "2018-08-10", "monthly"))
{
    "WFC": {
        "currency": "USD",
        "eventsData": {
            "dividends": {
                "2018-08-01": {
                    "amount": 0.43,
                    "date": 1533821400,
                    "formatted_date": "2018-08-09"
                }
            }
        },
        "firstTradeDate": {
            "date": 76233600,
            "formatted_date": "1972-06-01"
        },
        "instrumentType": "EQUITY",
        "prices": [
            {
                "adjclose": 57.19147872924805,
                "close": 57.61000061035156,
                "date": 1533096000,
                "formatted_date": "2018-08-01",
                "high": 59.5,
                "low": 57.08000183105469,
                "open": 57.959999084472656,
                "volume": 138922900
            }
        ],
        "timeZone": {
            "gmtOffset": -14400
        }
    }
}
  1. Monthly Historical Price Data for EURUSD:

yahoo_financials = YahooFinancials('EURUSD=X')
print(yahoo_financials.get_historical_price_data("2018-07-10", "2018-08-10", "monthly"))
{
    "EURUSD=X": {
        "currency": "USD",
        "eventsData": {},
        "firstTradeDate": {
            "date": 1070236800,
            "formatted_date": "2003-12-01"
        },
        "instrumentType": "CURRENCY",
        "prices": [
            {
                "adjclose": 1.1394712924957275,
                "close": 1.1394712924957275,
                "date": 1533078000,
                "formatted_date": "2018-07-31",
                "high": 1.169864296913147,
                "low": 1.1365960836410522,
                "open": 1.168961763381958,
                "volume": 0
            }
        ],
        "timeZone": {
            "gmtOffset": 3600
        }
    }
}
  1. Monthly Historical Price Data for BTC-USD:

yahoo_financials = YahooFinancials('BTC-USD')
print(yahoo_financials.get_historical_price_data("2018-07-10", "2018-08-10", "monthly"))
{
    "BTC-USD": {
        "currency": "USD",
        "eventsData": {},
        "firstTradeDate": {
            "date": 1279321200,
            "formatted_date": "2010-07-16"
        },
        "instrumentType": "CRYPTOCURRENCY",
        "prices": [
            {
                "adjclose": 6285.02001953125,
                "close": 6285.02001953125,
                "date": 1533078000,
                "formatted_date": "2018-07-31",
                "high": 7760.740234375,
                "low": 6133.02978515625,
                "open": 7736.25,
                "volume": 4334347882
            }
        ],
        "timeZone": {
            "gmtOffset": 3600
        }
    }
}
  1. Weekly Historical Price Data for Crude Oil Futures:

yahoo_financials = YahooFinancials('CL=F')
print(yahoo_financials.get_historical_price_data("2018-08-01", "2018-08-10", "weekly"))
{
    "CL=F": {
        "currency": "USD",
        "eventsData": {},
        "firstTradeDate": {
            "date": 1522555200,
            "formatted_date": "2018-04-01"
        },
        "instrumentType": "FUTURE",
        "prices": [
            {
                "adjclose": 68.58999633789062,
                "close": 68.58999633789062,
                "date": 1532923200,
                "formatted_date": "2018-07-30",
                "high": 69.3499984741211,
                "low": 66.91999816894531,
                "open": 68.37000274658203,
                "volume": 683048039
            },
            {
                "adjclose": 67.75,
                "close": 67.75,
                "date": 1533528000,
                "formatted_date": "2018-08-06",
                "high": 69.91999816894531,
                "low": 66.13999938964844,
                "open": 68.76000213623047,
                "volume": 1102357981
            }
        ],
        "timeZone": {
            "gmtOffset": -14400
        }
    }
}
  1. Apple Stock Quote Data:

yahoo_financials = YahooFinancials('AAPL')
print(yahoo_financials.get_stock_quote_type_data())
{
    "AAPL": {
        "underlyingExchangeSymbol": null,
        "exchangeTimezoneName": "America/New_York",
        "underlyingSymbol": null,
        "headSymbol": null,
        "shortName": "Apple Inc.",
        "symbol": "AAPL",
        "uuid": "8b10e4ae-9eeb-3684-921a-9ab27e4d87aa",
        "gmtOffSetMilliseconds": "-14400000",
        "exchange": "NMS",
        "exchangeTimezoneShortName": "EDT",
        "messageBoardId": "finmb_24937",
        "longName": "Apple Inc.",
        "market": "us_market",
        "quoteType": "EQUITY"
    }
}
  1. U.S. Treasury Current Pricing Data:

yahoo_financials = YahooFinancials(['^TNX', '^IRX', '^TYX'])
print(yahoo_financials.get_current_price())
{
    "^IRX": 2.033,
    "^TNX": 2.895,
    "^TYX": 3.062
}
  1. BTC-USD Summary Data:

yahoo_financials = YahooFinancials('BTC-USD')
print(yahoo_financials.get_summary_data())
{
    "BTC-USD": {
        "algorithm": "SHA256",
        "ask": null,
        "askSize": null,
        "averageDailyVolume10Day": 545573809,
        "averageVolume": 496761640,
        "averageVolume10days": 545573809,
        "beta": null,
        "bid": null,
        "bidSize": null,
        "circulatingSupply": 17209812,
        "currency": "USD",
        "dayHigh": 6266.5,
        "dayLow": 5891.87,
        "dividendRate": null,
        "dividendYield": null,
        "exDividendDate": "-",
        "expireDate": "-",
        "fiftyDayAverage": 6989.074,
        "fiftyTwoWeekHigh": 19870.62,
        "fiftyTwoWeekLow": 2979.88,
        "fiveYearAvgDividendYield": null,
        "forwardPE": null,
        "fromCurrency": "BTC",
        "lastMarket": "CCCAGG",
        "marketCap": 106325663744,
        "maxAge": 1,
        "maxSupply": 21000000,
        "navPrice": null,
        "open": 6263.2,
        "openInterest": null,
        "payoutRatio": null,
        "previousClose": 6263.2,
        "priceHint": 2,
        "priceToSalesTrailing12Months": null,
        "regularMarketDayHigh": 6266.5,
        "regularMarketDayLow": 5891.87,
        "regularMarketOpen": 6263.2,
        "regularMarketPreviousClose": 6263.2,
        "regularMarketVolume": 755834368,
        "startDate": "2009-01-03",
        "strikePrice": null,
        "totalAssets": null,
        "tradeable": false,
        "trailingAnnualDividendRate": null,
        "trailingAnnualDividendYield": null,
        "twoHundredDayAverage": 8165.154,
        "volume": 755834368,
        "volume24Hr": 750196480,
        "volumeAllCurrencies": 2673437184,
        "yield": null,
        "ytdReturn": null
    }
}
  1. Apple Key Statistics Data:

yahoo_financials = YahooFinancials('AAPL')
print(yahoo_financials.get_key_statistics_data())
{
    "AAPL": {
        "annualHoldingsTurnover": null,
        "enterpriseToRevenue": 2.973,
        "beta3Year": null,
        "profitMargins": 0.22413999,
        "enterpriseToEbitda": 9.652,
        "52WeekChange": -0.12707871,
        "morningStarRiskRating": null,
        "forwardEps": 13.49,
        "revenueQuarterlyGrowth": null,
        "sharesOutstanding": 4729800192,
        "fundInceptionDate": "-",
        "annualReportExpenseRatio": null,
        "totalAssets": null,
        "bookValue": 22.534,
        "sharesShort": 44915125,
        "sharesPercentSharesOut": 0.0095,
        "fundFamily": null,
        "lastFiscalYearEnd": 1538179200,
        "heldPercentInstitutions": 0.61208,
        "netIncomeToCommon": 59531001856,
        "trailingEps": 11.91,
        "lastDividendValue": null,
        "SandP52WeekChange": -0.06475246,
        "priceToBook": 6.7582316,
        "heldPercentInsiders": 0.00072999997,
        "nextFiscalYearEnd": 1601337600,
        "yield": null,
        "mostRecentQuarter": 1538179200,
        "shortRatio": 1,
        "sharesShortPreviousMonthDate": "2018-10-31",
        "floatShares": 4489763410,
        "beta": 1.127094,
        "enterpriseValue": 789555511296,
        "priceHint": 2,
        "threeYearAverageReturn": null,
        "lastSplitDate": "2014-06-09",
        "lastSplitFactor": "1/7",
        "legalType": null,
        "morningStarOverallRating": null,
        "earningsQuarterlyGrowth": 0.318,
        "priceToSalesTrailing12Months": null,
        "dateShortInterest": 1543536000,
        "pegRatio": 0.98,
        "ytdReturn": null,
        "forwardPE": 11.289103,
        "maxAge": 1,
        "lastCapGain": null,
        "shortPercentOfFloat": 0.0088,
        "sharesShortPriorMonth": 36469092,
        "category": null,
        "fiveYearAverageReturn": null
    }
}
  1. Apple and Wells Fargo Daily Dividend Data:

start_date = '1987-09-15'
end_date = '1988-09-15'
yahoo_financials = YahooFinancials(['AAPL', 'WFC'])
print(yahoo_financials.get_daily_dividend_data(start_date, end_date))
{
    "AAPL": [
        {
            "date": 564157800,
            "formatted_date": "1987-11-17",
            "amount": 0.08
        },
        {
            "date": 571674600,
            "formatted_date": "1988-02-12",
            "amount": 0.08
        },
        {
            "date": 579792600,
            "formatted_date": "1988-05-16",
            "amount": 0.08
        },
        {
            "date": 587655000,
            "formatted_date": "1988-08-15",
            "amount": 0.08
        }
    ],
    "WFC": [
        {
            "date": 562861800,
            "formatted_date": "1987-11-02",
            "amount": 0.3008
        },
        {
            "date": 570724200,
            "formatted_date": "1988-02-01",
            "amount": 0.3008
        },
        {
            "date": 578583000,
            "formatted_date": "1988-05-02",
            "amount": 0.3344
        },
        {
            "date": 586445400,
            "formatted_date": "1988-08-01",
            "amount": 0.3344
        }
    ]
}
  1. Apple key Financial Data:

yahoo_financials = YahooFinancials("AAPL")
print(yahoo_financials.get_financial_data())
{
    'AAPL': {
        'ebitdaMargins': 0.29395,
        'profitMargins': 0.21238,
        'grossMargins': 0.37818,
        'operatingCashflow': 69390999552,
        'revenueGrowth': 0.018,
        'operatingMargins': 0.24572,
        'ebitda': 76476997632,
        'targetLowPrice': 150,
        'recommendationKey': 'buy',
        'grossProfits': 98392000000,
        'freeCashflow': 42914250752,
        'targetMedianPrice': 270,
        'currentPrice': 261.78,
        'earningsGrowth': 0.039,
        'currentRatio': 1.54,
        'returnOnAssets': 0.11347,
        'numberOfAnalystOpinions': 40,
        'targetMeanPrice': 255.51,
        'debtToEquity': 119.405,
        'returnOnEquity': 0.55917,
        'targetHighPrice': 300,
        'totalCash': 100556996608,
        'totalDebt': 108046999552,
        'totalRevenue': 260174004224,
        'totalCashPerShare': 22.631,
        'financialCurrency': 'USD',
        'maxAge': 86400,
        'revenuePerShare': 56.341,
        'quickRatio': 1.384,
        'recommendationMean': 2.2
    }
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yahoofinancials-1.13.tar.gz (41.6 kB view details)

Uploaded Source

Built Distribution

yahoofinancials-1.13-py2-none-any.whl (36.3 kB view details)

Uploaded Python 2

File details

Details for the file yahoofinancials-1.13.tar.gz.

File metadata

  • Download URL: yahoofinancials-1.13.tar.gz
  • Upload date:
  • Size: 41.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.8.1 pkginfo/1.2.1 requests/2.12.4 setuptools/36.6.0 requests-toolbelt/0.7.0 clint/0.5.1 CPython/3.5.3 Linux/4.9.0-19-amd64

File hashes

Hashes for yahoofinancials-1.13.tar.gz
Algorithm Hash digest
SHA256 cdcd2e450256f91b7154bd796ccba57a22bd237122c11272f052dfc3ceda5ada
MD5 436b092f21419fa24bf348f034f2852a
BLAKE2b-256 75dfe0b551ae676205143065e805425fce753dba52434e110704f3881766000e

See more details on using hashes here.

File details

Details for the file yahoofinancials-1.13-py2-none-any.whl.

File metadata

  • Download URL: yahoofinancials-1.13-py2-none-any.whl
  • Upload date:
  • Size: 36.3 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.8.1 pkginfo/1.2.1 requests/2.12.4 setuptools/36.6.0 requests-toolbelt/0.7.0 clint/0.5.1 CPython/3.5.3 Linux/4.9.0-19-amd64

File hashes

Hashes for yahoofinancials-1.13-py2-none-any.whl
Algorithm Hash digest
SHA256 58bfaaeef062faa383330d0efc451659a7fe8e8971447a1a9e6d6490b19544a3
MD5 140561fad00a2f82dd3e5d7c7069dd99
BLAKE2b-256 e0cc109c68423fc2273b07e479797972d970aa87041e655cd6fb3cc24d1a607c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page