Skip to main content

Retrieve nearly all data from Yahoo Finance for one or more ticker symbols

Project description

Yahooquery

CodeFactor PyPi download total PyPI version shields.io PyPI license PyPI pyversions Build Status codecov

Python wrapper around an unofficial Yahoo Finance API.

Yahooquery Demo

Install

pip install yahooquery

Ticker

The Ticker module is the access point to the Yahoo Finance API. Pass a ticker symbol to the Ticker class.

from yahooquery import Ticker

aapl = Ticker('aapl')

Or pass a list of tickers.

tickers = Ticker(['aapl', 'msft'])

Data

Based on the data you'd like, the result will either be accessed through a dict or as a pandas.DataFrame. Accessing data is incredibly easy and pythonic.

Dictionaries

aapl = Ticker('aapl')

# Asset Profile
aapl.asset_profile
{'aapl': {'address1': 'One Apple Park Way', 'city': 'Cupertino', ... }}

# ESG Scores
aapl.esg_scores
{'aapl': {'totalEsg': 72.27, 'environomentScore': 89.81, ... }}

# Financial Data
aapl.financial_data
{'aapl': {'currentPrice': 275.15, 'targetHighPrice': 342.4, ... }}

# Key Statistics
aapl.key_stats
{'aapl': {'priceHint': 2, 'enterpriseValue': 1230054359040, ... }}

# Price Information
aapl.price
{'aapl': {'preMarketChange': {}, 'preMarketPrice': {}, ... }}

# Quote Type
aapl.quote_type
{'aapl': {'exchange': 'NMS', 'quoteType': 'EQUITY', ... }}

# Share Purchase Activity
aapl.share_purchase_activity
{'aapl': {'period': '6m', 'buyInfoCount': 20, ... }}

# Summary Information
aapl.summary_detail
{'aapl': {'priceHint': 2, 'previousClose': 271.46, ... }}
aapl.summary_profile
{'aapl': {'address1': 'One Apple Park Way', 'city': 'Cupertino', ... }}

How about more than one ticker?

# Pass a list of tickers to the Ticker class
tickers = Ticker(['aapl', 'msft'])

tickers.asset_profile
{'aapl': {'address1': 'One Apple Park Way', 'city': 'Cupertino', ... }, 'msft': {'address1': 'One Microsoft Way', 'city': 'Redmond', ... }}

tickers.esg_scores
{'aapl': {'totalEsg': 72.27, 'environomentScore': 89.81, ... }, 'msft': {'totalEsg': 74.8, 'environmentScore': 84.17, ... }}

tickers.financial_data
{'aapl': {'currentPrice': 275.15, 'targetHighPrice': 342.4, ... }, 'msft': {'currentPrice': 154.53, 'targetHighPrice': 174.0, ... }}

tickers.key_stats
{'aapl': {'priceHint': 2, 'enterpriseValue': 1230054359040, ... }, 'msft': {'priceHint': 2, 'enterpriseValue': 1127840350208, ... }}

tickers.price
{'aapl': {'preMarketChange': {}, 'preMarketPrice': {}, ... }, 'msft': {'preMarketChange': {}, 'preMarketPrice': {}, ... }}

tickers.quote_type
{'aapl': {'exchange': 'NMS', 'quoteType': 'EQUITY', ... }, 'msft': {'exchange': 'NMS', 'quoteType': 'EQUITY', ... }}

tickers.share_purchase_activity
{'aapl': {'period': '6m', 'buyInfoCount': 20, ... }, 'msft': {'period': '6m', 'buyInfoCount': 30, ... }}

tickers.summary_detail
{'aapl': {'priceHint': 2, 'previousClose': 271.46, ... }, 'msft': {'priceHint': 2, 'previousClose': 153.24, ... }}

tickers.summary_profile
{'aapl': {'address1': 'One Apple Park Way', 'city': 'Cupertino', ... }, 'msft': {'address1': 'One Microsoft Way', 'city': 'Redmond', ... }}

Dataframes

aapl.company_officers
aapl.earning_history
aapl.grading_history
aapl.insider_holders
aapl.insider_transactions
aapl.institution_ownership
aapl.recommendation_trend
aapl.sec_filings
aapl.fund_ownership
aapl.major_holders
aapl.earnings_trend

# The following methods take a frequency argument.  If nothing is provided, annual data will be returned.  To return quarterly data, pass "q" as an argument.
aapl.balance_sheet()  # Defaults to Annual
aapl.balance_sheet(frequency="q")
aapl.balance_sheet("q")
aapl.cash_flow()
aapl.income_statement()

Fund Specific

Mutual Funds have many of the accessors detailed above as well as the additional ones below:

fund = Ticker('rpbax')

fund.fund_category_holdings  # pandas.DataFrame
fund.fund_bond_ratings  # pandas.DataFrame
fund.fund_sector_weightings  # pandas.DataFrame
fund.fund_performance  # dict
fund.fund_bond_holdings  # dict
fund.fund_equity_holdings  # dict

Options

Retrieve option pricing for every expiration date for given ticker(s)

import pandas as pd
df = aapl.option_chain  # returns pandas.DataFrame

# The dataframe contains a MultiIndex
df.index.names
FrozenList(['symbol', 'expiration_date', 'option_type', 'row'])

# Get all options for specified symbol
df.loc['aapl']

# Get specific expiration date for specified symbol
df.loc['aapl', '2020-01-02']

# Get specific option type for expiration date for specified symbol
df.loc['aapl', '2020-01-02', 'calls']

# Works with multiple tickers as well
tickers = Ticker(['aapl', 'msft', 'fb'])
df = tickers.option_chain

# Retrieve options for only one symbol
df.loc['aapl']

# Retrieve only calls for all symbols
df.xs('calls', level=2)

# Retrieve only puts for fb
df.xs(('fb', 'puts'), level=[0, 2])
# or
df.xs(('fb', 'puts'), level=['symbol', 'option_type'])

# Filter dataframe by options that in the money
df.loc[df['inTheMoney'] == True]

# Only include Apple in the money options
df.loc[df['inTheMoney'] == True].xs('aapl') 

Historical Pricing

Historical price data can be retrieved for one or more tickers through the history method.

aapl.history()

If no arguments are provided, as above, default values will be supplied for both period and interval, which are ytd and 1d, respectively. Additional arguments you can provide to the method are start and end. Start and end dates can be either strings with a date format of yyyy-mm-dd or as a datetime.datetime object.

aapl.history(period='max')
aapl.history(start='2019-05-01')  # Default end date is now
aapl.history(end='2018-12-31')  # Default start date is 1900-01-01

# Period options = 1d, 5d, 1mo, 3mo, 6mo, 1y, 2y, 5y, 10y, ytd, max
# Interval options = 1m, 2m, 5m, 15m, 30m, 60m, 90m, 1h, 1d, 5d, 1wk, 1mo, 3mo

If trying to retrieve more than one ticker, one dataframe will be returned and the column ticker can be used to identify each row appropriately.

tickers = Ticker(['aapl', 'msft'])
tickers.history()
dates volume open low high close ticker
2019-01-02 07:30:00 37039700 154.89 154.23 158.85 157.92 AAPL
2019-01-03 07:30:00 91312200 143.98 142 145.72 142.19 AAPL
2019-12-12 07:30:00 24612100 151.65 151.02 153.44 153.24 MSFT
2019-12-13 14:00:01 23850062 153.003 152.85 154.89 154.53 MSFT

Multiple Endpoints

Access more than one endpoint in one call using the get_multiple_endoints method of the Ticker class. This method ONLY returns dictionaries.

aapl = Ticker('aapl')
endpoints = ['assetProfile', 'esgScores', 'incomeStatementHistory']
aapl.get_multiple_endpoints(endpoints)
{'aapl': {'assetProfile': {...}, 'esgScores', {...}, 'incomeStatementHistory', {...}}}

Type Ticker._ENDPOINTS to view the list of endpoints supported through this method.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yahooquery-1.0.9.tar.gz (14.0 kB view details)

Uploaded Source

Built Distribution

yahooquery-1.0.9-py3-none-any.whl (12.9 kB view details)

Uploaded Python 3

File details

Details for the file yahooquery-1.0.9.tar.gz.

File metadata

  • Download URL: yahooquery-1.0.9.tar.gz
  • Upload date:
  • Size: 14.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.8

File hashes

Hashes for yahooquery-1.0.9.tar.gz
Algorithm Hash digest
SHA256 1f867bb2815b49ef6b57ee633b07bd1e93e960412410f64bf00f752c48920ffc
MD5 821cfce6d08f98af63cc80e8ef47aeb6
BLAKE2b-256 b26bcc0d75997a03ce9ac71f17e1a8e6e7446452fe35160ae9643bc08d26b2f0

See more details on using hashes here.

File details

Details for the file yahooquery-1.0.9-py3-none-any.whl.

File metadata

  • Download URL: yahooquery-1.0.9-py3-none-any.whl
  • Upload date:
  • Size: 12.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.8

File hashes

Hashes for yahooquery-1.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 e6d50b8a37534720abe539e2e44c35de060692086417ca5b3b380593874ef4c3
MD5 e4a8781872d567b8918c53b6c4e3278f
BLAKE2b-256 5c04622830d5c45ddacad2cd329fd5f4e6a612bc11ab24c31673af2757f5e8e4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page