Klingon NLP toolkit
Project description
yajwI’ is a Klingon NLP toolkit that includes basic tokenization, morphological analysis and POS tagging.
It heavily uses the boQwI’ dictionary.
Installation
yajwI’ requires Python 3.8 or newer.
It can be installed from PyPI:
pip install yajwiz
Updating and using the boQwI’ dictionary
When yajwI’ is first imported, it will download a copy of the boQwI’ dictionary. After this the update_dictionary() function must be called whenever the dictionary needs to be updated. The function will check for updates and install them.
The downloaded dictionary can be accessed through the load_dictionary() function.
>>> import yajwiz >>> yajwiz.update_dictionary() >>> dictionary = yajwiz.load_dictionary() >>> dictionary.version '2021.03.18a'
Tokenization
The library includes very simple tokenization.
>>> import yajwiz >>> yajwiz.tokenize("Hegh neH chav qoH. qanchoHpa' qoH, Hegh qoH.") [('WORD', 'Hegh'), ('SPACE', ' '), ('WORD', 'neH'), ('SPACE', ' '), ('WORD', 'chav'), ('SPACE', ' '), ('WORD', 'qoH'), ('PUNCT', '.'), ('SPACE', ' '), ('WORD', "qanchoHpa'"), ('SPACE', ' '), ('WORD', 'qoH'), ('PUNCT', ','), ('SPACE', ' '), ('WORD', 'Hegh'), ('SPACE', ' '), ('WORD', 'qoH'), ('PUNCT', '.')]
Morphological analysis
The yajwiz.analyze function parses a word and returns a list of possible parses and a lot of extra information.
>>> yajwiz.analyze("yInwI'") [{'BOQWIZ_ID': 'yIn:n', 'BOQWIZ_POS': 'n:klcp1', 'LEMMA': 'yIn', 'PARTS': ['yIn:n', "-wI':n"], 'POS': 'N', 'SUFFIX': {'N4': "-wI'"}, 'UNGRAMMATICAL': 'ILLEGAL PLURAL OR POSSESSIVE SUFFIX', 'WORD': "yInwI'", 'XPOS': 'N', 'XPOS_GSUFF': 'N'}, {'BOQWIZ_ID': 'yIn:v', 'BOQWIZ_POS': 'v:t_c,klcp1', 'LEMMA': 'yIn', 'PARTS': ['yIn:v', "-wI':v"], 'POS': 'V', 'SUFFIX': {'V9': "-wI'"}, 'WORD': "yInwI'", 'XPOS': 'VT', 'XPOS_GSUFF': "VT.wI'"}]
Currently the analyzer is very permissive and does allow using wrong plurals and possessive suffixes (eg. yInwI’ instead of yInwIj). It will try to mark this kind of errors with 'UNGRAMMATICAL': True. It detects the following errors:
Using -pu’, -wI’, -lI’, etc. when the noun is not a person noun
Using -Du’ when the noun is not a body part
Using -vIS without using -taH
Using -lu’ with an illegal verb prefix
Using intransitive verbs with prefixes indicating object
Using -ghach without any other verb suffix
Using aspect suffix with -jaj
There is also a simpler function yajwiz.split_to_morphemes, that returns a set of tuples of strings (usually there will be only one tuple in the set):
>>> yajwiz.split_to_morphemes("yInwI'") {('yIn', "-wI'")}
List of Parts of Speech
XPOS |
Explanation |
---|---|
VS |
Stative verb |
VT |
Transitive verb |
VI |
Intransitive verb |
VA |
Transitive and intransitive verb |
V? |
Verb with unknown transitivity |
NL |
Person noun |
NB |
Body part noun |
PRON |
Pronoun (including ‘Iv and nuq: it is a noun that can function as a copula) |
NUM |
Number |
N |
Other noun |
ADV |
Adverb |
EXCL |
Exclamation |
CONJ |
Conjunction |
QUES |
Question word (other than ‘Iv and nuq) |
UNK |
Unknown |
Grammar checker
yajwI’ can be used to find common grammar errors. You can either use the method yajwiz.grammar_check or the following command line interface:
python -m yajwiz.grammar_check file.txt
CONLL-U files and POS tagger
CONLL-U files are a popular data format for storing annotated linguistic data.
yajwI’ can generate CONLL-U files filled with morphological information (it does not support dependency parsing).
Below is an example script that first parses a text without a trained POS tagger, then trains a POS tagger with it and finally parses the text with the tagger and saves the result to a CONLL-U file.
import yajwiz
with open("prose-corpus.txt", "r") as f:
text = f.read()
conllu = yajwiz.text_to_conllu(text)
tagger = yajwiz.Tagger()
tagger.train(yajwiz.conllu_to_tagged_list(conllu))
conllu = yajwiz.text_to_conllu(text, tagger)
with open("prose-corpus.conllu", "w") as f:
f.write(conllu)
Without a trained POS tagger, ambiguous words will be left without a tag:
# Hegh neH chav qoH.
1 Hegh _ _ _ _ _ _ _ _
2 neH _ _ _ _ _ _ _ _
3 chav _ _ _ _ _ _ _ _
4 qoH qoH NOUN N _ _ _ _ _
5 . . PUNCT PUNCT _ _ _ _ _
# qanchoHpa' qoH, Hegh qoH.
1 qanchoHpa' qan VERB V?.pa' Person=3|ObjPerson=3,0 _ _ _ SuffixV3=-choH|SuffixV9=-pa'
2 qoH qoH NOUN N _ _ _ _ _
3 , , PUNCT PUNCT _ _ _ _ _
4 Hegh _ _ _ _ _ _ _ _
5 qoH qoH NOUN N _ _ _ _ _
6 . . PUNCT PUNCT _ _ _ _ _
After training the tagger, it will take the “best guess” when deciding the POS.
# Hegh neH chav qoH.
1 Hegh Hegh VERB VT Person=3|ObjPerson=3,0 _ _ _ _
2 neH neH ADV ADV _ _ _ _ _
3 chav chav VERB VT Person=3|ObjPerson=3,0 _ _ _ _
4 qoH qoH NOUN N _ _ _ _ _
5 . . PUNCT PUNCT _ _ _ _ _
# qanchoHpa' qoH, Hegh qoH.
1 qanchoHpa' qan VERB V?.pa' Person=3|ObjPerson=3,0 _ _ _ SuffixV3=-choH|SuffixV9=-pa'
2 qoH qoH NOUN N _ _ _ _ _
3 , , PUNCT PUNCT _ _ _ _ _
4 Hegh Hegh VERB VT Person=3|ObjPerson=3,0 _ _ _ _
5 qoH qoH NOUN N _ _ _ _ _
6 . . PUNCT PUNCT _ _ _ _ _
In this example the tagger made a mistake: it classified the first Hegh as VT, although it should be N. I don’t have a correctly tagged corpus, so evaluating the tagger is currently impossible. :(
Copyright
yajwiz (c) 2020 Iikka Hauhio
This program a uses the boQwI’ dictionary (data.json) that is licensed under the Apache License 2.0.
The Python files are also licensed under the Apache License 2.0. See the LICENSE file for more details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file yajwiz-0.10.4.tar.gz
.
File metadata
- Download URL: yajwiz-0.10.4.tar.gz
- Upload date:
- Size: 25.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b53a237cd7ebbd8aa4bca38c1283d5d48a8652c30f3cb3cccb57e9341628f8c0 |
|
MD5 | 529079e6a4fd97529262148bf386d398 |
|
BLAKE2b-256 | 97e11f494f8833fdfdbba35aa62f81b04c910b5840479a1cf4759d123282b03a |
File details
Details for the file yajwiz-0.10.4-py3-none-any.whl
.
File metadata
- Download URL: yajwiz-0.10.4-py3-none-any.whl
- Upload date:
- Size: 2.2 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 921066ca18a09ee77d57bbdf50c7fb4be3d58c06e794a6f84143672e33161f66 |
|
MD5 | 28f8e3cd7259fd04583d06239914a7ee |
|
BLAKE2b-256 | e1e67254e267a26955ea929b73ef7d701a40b63891dc9d248752ae35984743bf |