Skip to main content

Keyword extraction Python package

Project description

Yet Another Keyword Extractor (Yake)

Unsupervised Approach for Automatic Keyword Extraction using Text Features.

YAKE! is a light-weight unsupervised automatic keyword extraction method which rests on text statistical features extracted from single documents to select the most important keywords of a text. Our system does not need to be trained on a particular set of documents, neither it depends on dictionaries, external-corpus, size of the text, language or domain. To demonstrate the merits and the significance of our proposal, we compare it against ten state-of-the-art unsupervised approaches (TF.IDF, KP-Miner, RAKE, TextRank, SingleRank, ExpandRank, TopicRank, TopicalPageRank, PositionRank and MultipartiteRank), and one supervised method (KEA). Experimental results carried out on top of twenty datasets (see Benchmark section below) show that our methods significantly outperform state-of-the-art methods under a number of collections of different sizes, languages or domains. In addition to the python package here described, we also make available a demo, an API and a mobile app.

Main Features

  • Unsupervised approach
  • Corpus-Independent
  • Domain and Language Independent
  • Single-Document

Where can I find YAKE!?

YAKE! is available online [http://yake.inesctec.pt], as an open source Python package [https://github.com/LIAAD/yake] and on Google Play.

References

Please cite the following works when using YAKE

In-depth journal paper at Information Sciences Journal

Campos, R., Mangaravite, V., Pasquali, A., Jatowt, A., Jorge, A., Nunes, C. and Jatowt, A. (2020). YAKE! Keyword Extraction from Single Documents using Multiple Local Features. In Information Sciences Journal. Elsevier, Vol 509, pp 257-289. pdf

ECIR'18 Best Short Paper

Campos R., Mangaravite V., Pasquali A., Jorge A.M., Nunes C., and Jatowt A. (2018). A Text Feature Based Automatic Keyword Extraction Method for Single Documents. In: Pasi G., Piwowarski B., Azzopardi L., Hanbury A. (eds). Advances in Information Retrieval. ECIR 2018 (Grenoble, France. March 26 – 29). Lecture Notes in Computer Science, vol 10772, pp. 684 - 691. pdf

Campos R., Mangaravite V., Pasquali A., Jorge A.M., Nunes C., and Jatowt A. (2018). YAKE! Collection-independent Automatic Keyword Extractor. In: Pasi G., Piwowarski B., Azzopardi L., Hanbury A. (eds). Advances in Information Retrieval. ECIR 2018 (Grenoble, France. March 26 – 29). Lecture Notes in Computer Science, vol 10772, pp. 806 - 810. pdf

Awards

ECIR'18 Best Short Paper

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yake-0.4.7.tar.gz (402.0 kB view details)

Uploaded Source

Built Distribution

yake-0.4.7-py2.py3-none-any.whl (60.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file yake-0.4.7.tar.gz.

File metadata

  • Download URL: yake-0.4.7.tar.gz
  • Upload date:
  • Size: 402.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.3

File hashes

Hashes for yake-0.4.7.tar.gz
Algorithm Hash digest
SHA256 c67afd5f1313bc521f43709ff2efd67c12073b6f448bdf2f2de59b8566369f6a
MD5 c4cef5c2d200c8b2787f71b7f5a89e8b
BLAKE2b-256 fce9b6d213558f0162e7afc75f6cb6183a34290b21bcff652ad9b535e2c2fe8a

See more details on using hashes here.

File details

Details for the file yake-0.4.7-py2.py3-none-any.whl.

File metadata

  • Download URL: yake-0.4.7-py2.py3-none-any.whl
  • Upload date:
  • Size: 60.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.3

File hashes

Hashes for yake-0.4.7-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 49768631dd54225c1f7cfc53561ccf1d0b3e79e019296e823e34c575d855bcd3
MD5 f5b533335b716161aba5ff0e7f3c4919
BLAKE2b-256 f67e85ef0ce2e6a6756cc27ea7afa13a25d112d583c8b0a6639dd33e5249adc3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page