Skip to main content

lightweight, simple, and fast declarative XML and JSON data extraction

Project description

Yankee - Simple Declarative Data Extraction from XML and JSON

This is kind of like Marshmallow, but only does deserialization. What it lacks in reversibility, it makes up for in speed. Schemas are compiled in advance allowing data extraction to occur very quickly.

Motivation

I have another package called patent_client. I also do a lot with legal data, some of which is in XML, and some of which is in JSON. But there's a lot of it. And I mean a lot, so speed matters.

Quick Start

There are two main modules: yankee.json.schema and yankee.xml.schema. Those modules support defining class-style deserializers. Both start by subclassing a Schema class, and then defining attributes from the fields submodule.

JSON Deserializer Example

    from yankee.json import Schema, fields

    class JsonExample(Schema):
        name = fields.String()
        birthday = fields.Date("birthdate")
        deep_data = fields.Int("something.0.many.levels.deep")

    obj = {
        "name": "Johnny Appleseed",
        "birthdate": "2000-01-01",
        "something": [
            {"many": {
                "levels": {
                    "deep": 123
                }
            }}
        ]
    }

    JsonExample().deserialize(obj)
    # Returns
    {
        "name": "Johnny Appleseed",
        "birthday": datetime.date(2000, 1, 1),
        "deep_data": 123
    }

For JSON, the attributes are filled by pulling values off of the JSON object. If no path is provided, then the attribute name is used. Otherwise, a dotted string can be used to pluck an item from the JSON object.

XML Deserializer Example

    import lxml.etree as ET
    from yankee.xml import Schema, fields

    class XmlExample(Schema):
        name = fields.String("./name")
        birthday = fields.Date("./birthdate")
        deep_data = fields.Int("./something/many/levels/deep")

    obj = ET.fromstring(b"""
    <xmlObject>
        <name>Johnny Appleseed</name>
        <birthdate>2000-01-01</birthdate>
        <something>
            <many>
                <levels>
                    <deep>123</deep>
                </levels>
            </many>
        </something>
    </xmlObject>
    """.strip())

    XmlExample().deserialize(obj)
    # Returns
    {
        "name": "Johnny Appleseed",
        "birthday": datetime.date(2000, 1, 1),
        "deep_data": 123
    }

For XML, the attributes are filled using XPath expressions. If no path is provided, then the entire object is passed to the field (no implicit paths). Any valid Xpath expression can be used.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yankee-0.1.19.tar.gz (16.9 kB view details)

Uploaded Source

Built Distribution

yankee-0.1.19-py3-none-any.whl (21.8 kB view details)

Uploaded Python 3

File details

Details for the file yankee-0.1.19.tar.gz.

File metadata

  • Download URL: yankee-0.1.19.tar.gz
  • Upload date:
  • Size: 16.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.9.12 Darwin/21.5.0

File hashes

Hashes for yankee-0.1.19.tar.gz
Algorithm Hash digest
SHA256 deaf204351fa119115522f6a887f0f0ef99b22cc581a9abb3b7341280451ad5f
MD5 29d81c363ec91c05e459a2bd53bbda9b
BLAKE2b-256 694aebd4f21b10dd342f5ed0e4df8c9847a23deef615c22410abf49f913e5617

See more details on using hashes here.

File details

Details for the file yankee-0.1.19-py3-none-any.whl.

File metadata

  • Download URL: yankee-0.1.19-py3-none-any.whl
  • Upload date:
  • Size: 21.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.9.12 Darwin/21.5.0

File hashes

Hashes for yankee-0.1.19-py3-none-any.whl
Algorithm Hash digest
SHA256 a8ae0f7ea1dbd66f840f3e8998e16f9d43e7cc64f61f2a60e33be4b45b16e96c
MD5 f6d96e31ba7044fc26bd8e1a834e876a
BLAKE2b-256 ed541850416874d7a43b33336b1a95af80f1e6ea9adb921e20a9f8185c2d6371

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page