Skip to main content

lightweight, simple, and fast declarative XML and JSON data extraction

Project description

Yankee - Simple Declarative Data Extraction from XML and JSON

This is kind of like Marshmallow, but only does deserialization. What it lacks in reversibility, it makes up for in speed. Schemas are compiled in advance allowing data extraction to occur very quickly.

Motivation

I have another package called patent_client. I also do a lot with legal data, some of which is in XML, and some of which is in JSON. But there's a lot of it. And I mean a lot, so speed matters.

Quick Start

There are two main modules: yankee.json.schema and yankee.xml.schema. Those modules support defining class-style deserializers. Both start by subclassing a Schema class, and then defining attributes from the fields submodule.

JSON Deserializer Example

    from yankee.json import Schema, fields

    class JsonExample(Schema):
        name = fields.String()
        birthday = fields.Date("birthdate")
        deep_data = fields.Int("something.0.many.levels.deep")

    obj = {
        "name": "Johnny Appleseed",
        "birthdate": "2000-01-01",
        "something": [
            {"many": {
                "levels": {
                    "deep": 123
                }
            }}
        ]
    }

    JsonExample().deserialize(obj)
    # Returns
    {
        "name": "Johnny Appleseed",
        "birthday": datetime.date(2000, 1, 1),
        "deep_data": 123
    }

For JSON, the attributes are filled by pulling values off of the JSON object. If no path is provided, then the attribute name is used. Otherwise, a dotted string can be used to pluck an item from the JSON object.

XML Deserializer Example

    import lxml.etree as ET
    from yankee.xml import Schema, fields

    class XmlExample(Schema):
        name = fields.String("./name")
        birthday = fields.Date("./birthdate")
        deep_data = fields.Int("./something/many/levels/deep")

    obj = ET.fromstring(b"""
    <xmlObject>
        <name>Johnny Appleseed</name>
        <birthdate>2000-01-01</birthdate>
        <something>
            <many>
                <levels>
                    <deep>123</deep>
                </levels>
            </many>
        </something>
    </xmlObject>
    """.strip())

    XmlExample().deserialize(obj)
    # Returns
    {
        "name": "Johnny Appleseed",
        "birthday": datetime.date(2000, 1, 1),
        "deep_data": 123
    }

For XML, the attributes are filled using XPath expressions. If no path is provided, then the entire object is passed to the field (no implicit paths). Any valid Xpath expression can be used.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yankee-0.1.21.tar.gz (17.1 kB view details)

Uploaded Source

Built Distribution

yankee-0.1.21-py3-none-any.whl (22.1 kB view details)

Uploaded Python 3

File details

Details for the file yankee-0.1.21.tar.gz.

File metadata

  • Download URL: yankee-0.1.21.tar.gz
  • Upload date:
  • Size: 17.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.9.12 Darwin/21.5.0

File hashes

Hashes for yankee-0.1.21.tar.gz
Algorithm Hash digest
SHA256 f685c777208687232aebfb4b00621f28558fd8ebaf454339ebe55a3e406b2ecf
MD5 561ffe44d11bc648db18f5d452e564fc
BLAKE2b-256 e652beb641ca1233cdde8ee4d88471c359de7c6e3f5675b691a0ed8599859067

See more details on using hashes here.

File details

Details for the file yankee-0.1.21-py3-none-any.whl.

File metadata

  • Download URL: yankee-0.1.21-py3-none-any.whl
  • Upload date:
  • Size: 22.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.9.12 Darwin/21.5.0

File hashes

Hashes for yankee-0.1.21-py3-none-any.whl
Algorithm Hash digest
SHA256 c3e4ed6f4fcf4686e4d9fdc7e72605b6afe94edf6d459096d39af60b5327e63d
MD5 b461bba6a772539e02160d75c2d12d33
BLAKE2b-256 9b601891e21c107c018f2703ba4bd25ae330e8a07f25d2caeb7063cc800535c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page