Skip to main content

lightweight, simple, and fast declarative XML and JSON data extraction

Project description

Yankee - Simple Declarative Data Extraction from XML and JSON

This is kind of like Marshmallow, but only does deserialization. What it lacks in reversibility, it makes up for in speed. Schemas are compiled in advance allowing data extraction to occur very quickly.

Motivation

I have another package called patent_client. I also do a lot with legal data, some of which is in XML, and some of which is in JSON. But there's a lot of it. And I mean a lot, so speed matters.

Quick Start

There are two main modules: yankee.json.schema and yankee.xml.schema. Those modules support defining class-style deserializers. Both start by subclassing a Schema class, and then defining attributes from the fields submodule.

JSON Deserializer Example

    from yankee.json import Schema, fields

    class JsonExample(Schema):
        name = fields.String()
        birthday = fields.Date("birthdate")
        deep_data = fields.Int("something.0.many.levels.deep")

    obj = {
        "name": "Johnny Appleseed",
        "birthdate": "2000-01-01",
        "something": [
            {"many": {
                "levels": {
                    "deep": 123
                }
            }}
        ]
    }

    JsonExample().deserialize(obj)
    # Returns
    {
        "name": "Johnny Appleseed",
        "birthday": datetime.date(2000, 1, 1),
        "deep_data": 123
    }

For JSON, the attributes are filled by pulling values off of the JSON object. If no path is provided, then the attribute name is used. Otherwise, a dotted string can be used to pluck an item from the JSON object.

XML Deserializer Example

    import lxml.etree as ET
    from yankee.xml import Schema, fields

    class XmlExample(Schema):
        name = fields.String("./name")
        birthday = fields.Date("./birthdate")
        deep_data = fields.Int("./something/many/levels/deep")

    obj = ET.fromstring(b"""
    <xmlObject>
        <name>Johnny Appleseed</name>
        <birthdate>2000-01-01</birthdate>
        <something>
            <many>
                <levels>
                    <deep>123</deep>
                </levels>
            </many>
        </something>
    </xmlObject>
    """.strip())

    XmlExample().deserialize(obj)
    # Returns
    {
        "name": "Johnny Appleseed",
        "birthday": datetime.date(2000, 1, 1),
        "deep_data": 123
    }

For XML, the attributes are filled using XPath expressions. If no path is provided, then the entire object is passed to the field (no implicit paths). Any valid Xpath expression can be used.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yankee-0.1.3.tar.gz (14.8 kB view details)

Uploaded Source

Built Distribution

yankee-0.1.3-py3-none-any.whl (19.7 kB view details)

Uploaded Python 3

File details

Details for the file yankee-0.1.3.tar.gz.

File metadata

  • Download URL: yankee-0.1.3.tar.gz
  • Upload date:
  • Size: 14.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.9.12 Darwin/21.5.0

File hashes

Hashes for yankee-0.1.3.tar.gz
Algorithm Hash digest
SHA256 f5cef18359912f92e6476778aa5efd79892c66e17cc7176ce41ee745d08dcd39
MD5 ac7f751c39be331609e122b0418d5ec9
BLAKE2b-256 7897aedb676dff6fffb5f8835f4a97a301c92f6da0357d2f0615e755badd7871

See more details on using hashes here.

File details

Details for the file yankee-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: yankee-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 19.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.9.12 Darwin/21.5.0

File hashes

Hashes for yankee-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 7140de1e9bcffdfb932c2f6b11a0989d39a380897508c06919a4689554e27a98
MD5 b0114702fdd443bb15229904ddade418
BLAKE2b-256 3275264cdd283a1c5abd68a2a590b13efdbc59d09f573d729037c3c62d16e647

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page