Skip to main content

Yet Another Python Experiment Configuration System (YAPECS)

Project description

Yet Another Python Experiment Configuration System (yapecs)

PyPI License Downloads

pip install yapecs

yapecs is a Python library for experiment configuration. It is an alternative to using JSON or YAML files, or more complex solutions such as hydra. With yapecs,

  • Configuration files are written in Python. You do not need to learn new syntax, and your configurations can be as expressive as desired, using, e.g., classes, functions, or built-in types.
  • Configuration parameters are bound to the user's module. This reduces code bloat by eliminating the need to pass a configuration dictionary or many individual values through functions.
  • Integration is simple, requiring only four or five lines of code (including imports).

Table of contents

Usage

Configuration

Say we are creating a weather module to predict tomorrow's temperature given two features: 1) today's temperature and 2) the average temperature during previous years. Our default configuration file (e.g., weather/config/defaults.py) might look like the following.

# Number of items in a batch
BATCH_SIZE = 64

# Optimizer learning rate
LEARNING_RATE = 1e-4

# Whether to use today's temperature as a feature
TODAYS_TEMP_FEATURE = True

# Whether to use the average temperature as a feature
AVERAGE_TEMP_FEATURE = True

Say we want to run an experiment without using today's temperature as a feature. We can create a new configuration file (e.g., config.py) with just the module name and the changed parameters.

MODULE = 'weather'

# Whether to use today's temperature as a feature
TODAYS_TEMP_FEATURE = False

Using yapecs, we pass our new file using the --config parameter. For example, if our weather module has a training entrypoint train, we can use the following.

python -m weather.train --config config.py

You can also pass a list of configuration files. This will apply all configuration files with a matching MODULE name, in order.

python -m weather.train --config config-00.py config-01.py ...

Within the weather module, we make two changes. First, we add the following to module root initialization file weather/__init__.py.

###############################################################################
# Configuration
###############################################################################


# Default configuration parameters to be modified
from .config import defaults

# Modify configuration
import yapecs
yapecs.configure('weather', defaults)

# Import configuration parameters
del defaults
from .config.defaults import *


###############################################################################
# Module imports
###############################################################################


# Your module root imports go here
pass

This assumes that default configuration values are saved in weather/config/defaults.py. You can also define configuration values that depend on other configuration values, and control the import order relative to configuration. Using our weather module example, we may want to keep track of the total number of features (e.g., to initialize a machine learning model). To do this, we create a file weather/config/static.py containing the following.

import weather

# Total number of features
NUM_FEATURES = (
    int(weather.TODAYS_TEMP_FEATURE) +
    int(weather.AVERAGE_TEMP_FEATURE))

We update the module root initialization as follows.

...

from .config.defaults import *
from .config.static import *  # Import dependent parameters last


###############################################################################
# Module imports
###############################################################################

...

The second change we make is to add --config as a command-line option. We created a lightweight replacement for argparse.ArgumentParser, called yapecs.ArgumentParser, which does this.

Composing configured modules

When working with multiple configurations of the same module, you can load the module multiple times with different configs by using yapecs.compose.

import yapecs
import weather

# Compose base module with configuration file
weather_compose = yapecs.compose(weather, ['config.py'])

# Test that the modules are now different
assert weather.TODAYS_TEMP_FEATURE and not weather_compose.TODAYS_TEMP_FEATURE

Hyperparameter search

To perform a hyperparameter grid search, write a config file containing the lists of values to search. Below is an example. Note that we check if weather as the defaults attribute as a lock on whether or not it is currently being configured. This prevents the progress file from being updated multiple times erroneously.

MODULE = 'weather'

import yapecs
from pathlib import Path


# Import module, but delay updating search params until after configuration
import weather
if hasattr(weather, 'defaults'):

    # Lock file to track search progress
    progress_file = Path(__file__).parent / 'grid_search.progress'

    # Values that we want to search over
    learning_rate = [1e-5, 1e-4, 1e-3]
    batch_size = [64, 128, 256]
    average_temp_feature = [True, False]

    # Get grid search parameters for this run
    LEARNING_RATE, BATCH_SIZE, AVERAGE_TEMP_FEATURE = yapecs.grid_search(
        progress_file,
        learning_rate,
        batch_size,
        average_temp_feature)


###############################################################################
# Additional configuration
###############################################################################


# Whether to use today's temperature as a feature
TODAYS_TEMP_FEATURE = False

You can perform the search by running, e.g.,

while python -m weather --config causal_transformer_search.py; do :; done

This runs training repeatedly, incrementing the progress index and choosing the appropriate config values each time until the search is complete. Running a hyperparameter search in parallel is not (yet) supported.

Application programming interface (API)

yapecs.configure

def configure(
    module_name: str,
    config_module: ModuleType,
    config: Optional[Path] = None
) -> None:
    """Update the configuration values

    Arguments
        module_name
            The name of the module to configure
        config_module
            The submodule containing configuration values
        config
            The Python file containing the updated configuration values.
            If not provided and the ``--config`` parameter is a command-line
            argument, the corresponding argument is used as the configuration
    """

yapecs.compose

def compose(
    module: ModuleType,
    config_paths: List[Union[str, Path]]
) -> ModuleType:
    """Compose a configured module from a base module and list of configs

    Arguments
        module
            The base module to configure
        config_paths
            A list of paths to yapecs config files

    Returns
        composed
            A new module made from the base module and configurations
    """

yapecs.grid_search

def grid_search(progress_file: Union[str, os.PathLike], *args: Tuple) -> Tuple:
    """Perform a grid search over configuration arguments

    Arguments
        progress_file
            File to store current search progress
        args
            Lists of argument values to perform grid search over

    Returns
        current_args
            The arguments that should be used by the current process
    """

yapecs.ArgumentParser

This is a lightweight wrapper around argparse.ArgumentParser that defines and manages a --config parameter.

class ArgumentParser(argparse.ArgumentParser):

    def parse_args(
        self,
        args: Optional[List[str]] = None,
        namespace: Optional[argparse.Namespace] = None
    ) -> argparse.Namespace:
        """Parse arguments while allowing unregistered config argument

        Arguments
            args
                Arguments to parse. Default is taken from sys.argv.
            namespace
                Object to hold the attributes. Default is an empty Namespace.

        Returns
            Namespace containing program arguments
        """

Community examples

The following are code repositories that utilize yapecs for configuration. If you would like to see your repo included, please open a pull request.

  • emphases - Crowdsourced and automatic speech prominence estimation
  • penn - Pitch-estimating neural networks
  • ppgs - High-fidelity neural phonetic posteriorgrams
  • pyfoal - Python forced alignment

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yapecs-0.0.8.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

yapecs-0.0.8-py3-none-any.whl (8.5 kB view details)

Uploaded Python 3

File details

Details for the file yapecs-0.0.8.tar.gz.

File metadata

  • Download URL: yapecs-0.0.8.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.14

File hashes

Hashes for yapecs-0.0.8.tar.gz
Algorithm Hash digest
SHA256 49d95679a30499a4a50406abcc593571999cb5626db312b5c3201900f6377472
MD5 52eb843c9f65fa7df22759554634a9d5
BLAKE2b-256 e3d43241e2d13ecf92bba8cda540d1b097dd7ce11dc92018681b4b65b4cdd517

See more details on using hashes here.

File details

Details for the file yapecs-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: yapecs-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 8.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.14

File hashes

Hashes for yapecs-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 f272454593b7b24747abc4cffeb6d949b84b8ea90ab9dde4a6eb8d444ac3805c
MD5 c72a56f9d0c35f0cac539d523c97bfaf
BLAKE2b-256 7b6d20b00b952cedede1a9c703656a103c810ea78c452b9a2b3fcfebb67fdfbc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page