Skip to main content

Yet Another Reinforcement Learning Library

Project description

Yet Another Reinforcement Learning Library (YARLL)

Codacy Badge

Update 25/03/2019: For now, the master branch won't get big changes. Instead, algorithms are adapted for TensorFlow 2 (and new ones may be added) on the TF2 branch.
Update 29/10/2018: New library name.
Update 25/10/2018: Added SAC implementation.


Different algorithms have currently been implemented (in no particular order):

Asynchronous Advantage Actor Critic (A3C)

The code for this algorithm can be found here. Example run after training using 16 threads for a total of 5 million timesteps on the PongDeterministic-v4 environment:

Pong example run

How to run

First, install the library using pip (you can first remove OpenCV from the file if it is already installed):

pip install yarll


You can run algorithms by passing the path to an experiment specification (which is a file in json format) to

python -m yarll.main <path_to_experiment_specification>

Examples of experiment specifications can be found in the experiment_specs folder.


Statistics can be plot using:

python -m yarll.misc.plot_statistics <path_to_stats>

<path_to_stats> can be one of 2 things:

  • A json file generated using gym.wrappers.Monitor, in case it plots the episode lengths and total reward per episode.
  • A directory containing TensorFlow scalar summaries for different tasks, in which case all of the found scalars are plot.

Help about other arguments (e.g. for using smoothing) can be found by executing python -m yarll.misc.plot_statistics -h.

Alternatively, it is also possible to use Tensorboard to show statistics in the browser by passing the directory with the scalar summaries as --logdir argument.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yarll-0.0.12.tar.gz (55.6 kB view hashes)

Uploaded source

Built Distribution

yarll-0.0.12-py3-none-any.whl (83.7 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page