Skip to main content

yarlp

Project description

|Build Status|

yarlp
-----

**Yet Another Reinforcement Learning Package**

Implementations of ```CEM`` </yarlp/agent/cem_agent.py>`__,
```REINFORCE`` </yarlp/agent/pg_agents.py>`__,
```TRPO`` </yarlp/agent/trpo_agent.py>`__,
```DDQN`` </yarlp/agent/ddqn_agent.py>`__,
```A2C`` </yarlp/agent/a2c_agent.py>`__ with reproducible benchmarks.
Experiments are templated using ``jsonschema`` and are compared to
published results. This is meant to be a starting point for working
implementations of classic RL algorithms. Unfortunately even
implementations from OpenAI baselines are `not always
reproducible <https://github.com/openai/baselines/issues/176>`__.

A working Dockerfile with ``yarlp`` installed can be run with:

- ``docker build -t "yarlpd" .``
- ``docker run -it yarlpd bash``

To run a benchmark, simply:

``python yarlp/experiment/experiment.py --help``

If you want to run things manually, look in ``examples`` or look at
this:

.. code:: python

from yarlp.agent.trpo_agent import TRPOAgent
from yarlp.utils.env_utils import NormalizedGymEnv

env = NormalizedGymEnv('MountainCarContinuous-v0')
agent = TRPOAgent(env, seed=123)
agent.train(max_timesteps=1000000)

Benchmarks
----------

We benchmark against published results and Openai
```baselines`` <https://github.com/openai/baselines>`__ where available
using
```yarlp/experiment/experiment.py`` </yarlp/experiment/experiment.py>`__.
Benchmark scripts for Openai ``baselines`` were made ad-hoc, such as
`this
one <https://github.com/btaba/baselines/blob/master/baselines/trpo_mpi/run_trpo_experiment.py>`__.

Atari10M
~~~~~~~~

+---------------+--------------+-------------------+
| |BeamRider| | |Breakout| | |Pong| |
+---------------+--------------+-------------------+
| |QBert| | |Seaquest| | |SpaceInvaders| |
+---------------+--------------+-------------------+

DDQN with dueling networks and prioritized replay
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``python yarlp/experiment/experiment.py run_atari10m_ddqn_benchmark``

I trained 6 Atari environments for 10M time-steps (**40M frames**),
using 1 random seed, since I only have 1 GPU and limited time on this
Earth. I used DDQN with dueling networks, but no prioritized replay
(although it's implemented). I compare the final mean 100 episode raw
scores for yarlp (with exploration of 0.01) with results from `Hasselt
et al, 2015 <https://arxiv.org/pdf/1509.06461.pdf>`__ and `Wang et al,
2016 <https://arxiv.org/pdf/1511.06581.pdf>`__ which train for **200M
frames** and evaluate on 100 episodes (exploration of 0.05).

I don't compare to OpenAI baselines because the OpenAI DDQN
implementation is **not** currently able to reproduce published results
as of 2018-01-20. See `this github
issue <https://github.com/openai/baselines/issues/176>`__, although I
found `these benchmark
plots <https://github.com/openai/baselines-results/blob/master/dqn_results.ipynb>`__
to be pretty helpful.

+------+------+------+------+
| env | yarl | Hass | Wang |
| | p | elt | et |
| | DUEL | et | al |
| | 40M | al | DUEL |
| | Fram | DDQN | 200M |
| | es | 200M | Fram |
| | | Fram | es |
| | | es | |
+======+======+======+======+
| Beam | 8705 | 7654 | 1216 |
| Ride | | | 4 |
| r | | | |
+------+------+------+------+
| Brea | 423. | 375 | 345 |
| kout | 5 | | |
+------+------+------+------+
| Pong | 20.7 | 21 | 21 |
| | 3 | | |
+------+------+------+------+
| QBer | 5410 | 1487 | 1922 |
| t | .75 | 5 | 0.3 |
+------+------+------+------+
| Seaq | 5300 | 7995 | 5024 |
| uest | .5 | | 5.2 |
+------+------+------+------+
| Spac | 1978 | 3154 | 6427 |
| eInv | .2 | .6 | .3 |
| ader | | | |
| s | | | |
+------+------+------+------+

+------+------+------+------+
| |Bea | |Bre | |Pon | |Qbe |
| mRid | akou | gNoF | rtNo |
| erNo | tNoF | rame | Fram |
| Fram | rame | skip | eski |
| eski | skip | -v4| | p-v4 |
| p-v4 | -v4| | | | |
| | | | | |
+------+------+------+------+
| |Sea | |Spa | | |
| ques | ceIn | | |
| tNoF | vade | | |
| rame | rsNo | | |
| skip | Fram | | |
| -v4| | eski | | |
| | p-v4 | | |
| | | | | |
+------+------+------+------+

A2C
^^^

``python yarlp/experiment/experiment.py run_atari10m_a2c_benchmark``

A2C on 10M time-steps (**40M frames**) with 1 random seed. Results
compared to learning curves from `Mnih et al,
2016 <https://arxiv.org/pdf/1602.01783.pdf>`__ extracted at 10M
time-steps from Figure 3. You are invited to run for multiple seeds and
the full 200M frames for a better comparison.

+-----------------+-----------------+---------------------------------+
| env | yarlp A2C 40M | Mnih et al A3C 40M 16-threads |
+=================+=================+=================================+
| BeamRider | 3150 | ~3000 |
+-----------------+-----------------+---------------------------------+
| Breakout | 418 | ~150 |
+-----------------+-----------------+---------------------------------+
| Pong | 20 | ~20 |
+-----------------+-----------------+---------------------------------+
| QBert | 3644 | ~1000 |
+-----------------+-----------------+---------------------------------+
| SpaceInvaders | 805 | ~600 |
+-----------------+-----------------+---------------------------------+

+------+------+------+------+
| |Bea | |Bre | |Pon | |Qbe |
| mRid | akou | gNoF | rtNo |
| erNo | tNoF | rame | Fram |
| Fram | rame | skip | eski |
| eski | skip | -v4| | p-v4 |
| p-v4 | -v4| | | | |
| | | | | |
+------+------+------+------+
| |Sea | |Spa | | |
| ques | ceIn | | |
| tNoF | vade | | |
| rame | rsNo | | |
| skip | Fram | | |
| -v4| | eski | | |
| | p-v4 | | |
| | | | | |
+------+------+------+------+

Here are some `more
plots <https://github.com/openai/baselines-results/blob/master/acktr_ppo_acer_a2c_atari.ipynb>`__
from OpenAI to compare against.

Mujoco1M
~~~~~~~~

TRPO
^^^^

``python yarlp/experiment/experiment.py run_mujoco1m_benchmark``

We average over 5 random seeds instead of 3 for both ``baselines`` and
``yarlp``. More seeds probably wouldn't hurt here, we report 95th
percent confidence intervals.

+-------------------------------+--------------------+-------------------------+----------------+
| |Hopper-v1| | |HalfCheetah-v1| | |Reacher-v1| | |Swimmer-v1| |
+-------------------------------+--------------------+-------------------------+----------------+
| |InvertedDoublePendulum-v1| | |Walker2d-v1| | |InvertedPendulum-v1| | |
+-------------------------------+--------------------+-------------------------+----------------+

CLI scripts
-----------

CLI convenience scripts will be installed with the package:

- Run a benchmark:

- ``python yarlp/experiment/experiment.py --help``

- Plot ``yarlp`` compared to Openai ``baselines`` benchmarks:

- ``compare_benchmark <yarlp-experiment-dir> <baseline-experiment-dir>``

- Experiments:

- Experiments can be defined using json, validated with
``jsonschema``. See `here </experiment_configs>`__ for sample
experiment configs. You can do a grid search if multiple
parameters are specified, which will run in parallel.
- Example:
``run_yarlp_experiment --spec-file experiment_configs/trpo_experiment_mult_params.json``

- Experiment plots:

- ``make_plots <experiment-dir>``

.. |Build Status| image:: https://travis-ci.org/btaba/yarlp.svg?branch=master
:target: https://travis-ci.org/btaba/yarlp
.. |BeamRider| image:: /assets/atari10m/ddqn/beamrider.gif
.. |Breakout| image:: /assets/atari10m/ddqn/breakout.gif
.. |Pong| image:: /assets/atari10m/ddqn/pong.gif
.. |QBert| image:: /assets/atari10m/ddqn/qbert.gif
.. |Seaquest| image:: /assets/atari10m/ddqn/seaquest.gif
.. |SpaceInvaders| image:: /assets/atari10m/ddqn/spaceinvaders.gif
.. |BeamRiderNoFrameskip-v4| image:: /assets/atari10m/ddqn/BeamRiderNoFrameskip-v4.png
.. |BreakoutNoFrameskip-v4| image:: /assets/atari10m/ddqn/BreakoutNoFrameskip-v4.png
.. |PongNoFrameskip-v4| image:: /assets/atari10m/ddqn/PongNoFrameskip-v4.png
.. |QbertNoFrameskip-v4| image:: /assets/atari10m/ddqn/QbertNoFrameskip-v4.png
.. |SeaquestNoFrameskip-v4| image:: /assets/atari10m/ddqn/SeaquestNoFrameskip-v4.png
.. |SpaceInvadersNoFrameskip-v4| image:: /assets/atari10m/ddqn/SpaceInvadersNoFrameskip-v4.png
.. |BeamRiderNoFrameskip-v4| image:: /assets/atari10m/a2c/BeamRiderNoFrameskip-v4.png
.. |BreakoutNoFrameskip-v4| image:: /assets/atari10m/a2c/BreakoutNoFrameskip-v4.png
.. |PongNoFrameskip-v4| image:: /assets/atari10m/a2c/PongNoFrameskip-v4.png
.. |QbertNoFrameskip-v4| image:: /assets/atari10m/a2c/QbertNoFrameskip-v4.png
.. |SeaquestNoFrameskip-v4| image:: /assets/atari10m/a2c/SeaquestNoFrameskip-v4.png
.. |SpaceInvadersNoFrameskip-v4| image:: /assets/atari10m/a2c/SpaceInvadersNoFrameskip-v4.png
.. |Hopper-v1| image:: /assets/mujoco1m/trpo/Hopper-v1.png
.. |HalfCheetah-v1| image:: /assets/mujoco1m/trpo/HalfCheetah-v1.png
.. |Reacher-v1| image:: /assets/mujoco1m/trpo/Reacher-v1.png
.. |Swimmer-v1| image:: /assets/mujoco1m/trpo/Swimmer-v1.png
.. |InvertedDoublePendulum-v1| image:: /assets/mujoco1m/trpo/InvertedDoublePendulum-v1.png
.. |Walker2d-v1| image:: /assets/mujoco1m/trpo/Walker2d-v1.png
.. |InvertedPendulum-v1| image:: /assets/mujoco1m/trpo/InvertedPendulum-v1.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

yarlp-0.1.0-py3.5.egg (541.9 kB view details)

Uploaded Source

File details

Details for the file yarlp-0.1.0-py3.5.egg.

File metadata

  • Download URL: yarlp-0.1.0-py3.5.egg
  • Upload date:
  • Size: 541.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for yarlp-0.1.0-py3.5.egg
Algorithm Hash digest
SHA256 3f6d9940d908b98e52f0408d483e2619b02e4813846b2ab716ff331ed8205af8
MD5 3ffeb2c64a48c3bebe39192b5e196c2c
BLAKE2b-256 40da1bbb9e67d724f597f8fbc61d53c939287a70eb035fdd4164545897bde35b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page