Skip to main content

Differentiable IR for Zero-Knowledge Machine Learning

Project description

yarrow-polycirc: Differentiable IR for Zero-Knowledge Machine Learning

Documentation Status

yarrow-polycirc is a a library for representing and differentiating polynomial (arithmetic) circuits.

It's used for two things:

  1. A graph-based, platform-agnostic datastructure for representing arithmetic circuits
  2. Differentiating arithmetic circuits for verified Zero-Knowledge ML.

Install with pip:

pip install yarrow-polycirc

Polynomial Circuits

Polynomial circuits are a bit like boolean circuits, except their wires can have values in an arbitrary semiring, not just {0, 1}.

Here's an example of a polynomial circuit over the semiring Z_32:

x₀ ───────────┐   ┌───┐
              └───┤   │
                  │ * ├──── y₀
      ┌───┐   ┌───┤   │
x₁ ───┤ - ├───┘   └───┘
      └───┘

Think of this circuit as computing the expression y₀ = x₀ * (-x₁). The "dangling wires" on the left are the inputs x₀ and x₁, and on the right are the outputs y₀.

Differentiability

Polycirc provides a function rdiff to differentiate circuits:

from polycirc import ir, rdiff
c = ir.dot(2) # example circuit - dot product of two 2-dimensional vectors
rc = rdiff(c)

See ./examples/iris.py for an example of using rdiff for machine learning. Theoretical details on rdiff are in Section 10 of this paper.

How to use it

Use the ir module to build circuits in an algebraic style. For example, let's first import the ir module:

from polycirc import ir

Basic circuits in the IR can be combined by stacking:

f = ir.identity(1) @ ir.negate(1)

Think of f visually like this:

x₀ ─────────── y₀
      ┌───┐   
x₁ ───┤ - ├─── y₁
      └───┘

We can plug the outputs of f into another circuit using the composition operation >>:

c = f >> ir.mul(1)

which looks like this:

x₀ ───────────┐   ┌───┐
              └───┤   │
                  │ * ├──── y₀
      ┌───┐   ┌───┤   │
x₁ ───┤ - ├───┘   └───┘
      └───┘

We can print this program as Python code:

from polycirc.ast import diagram_to_ast
print(diagram_to_ast(c, 'multiply_negate'))

And we get the following:

def multiply_negate(x0, x1):
    x2 = - (x1)
    x3 = x0 * x2
    return [x3]

Iris demo

See the included iris example which uses differentiability of the IR to train a simple linear model for the iris dataset. Both training and inference of this model happens with polynomial circuits, so yarrow-polycirc can be used for on-chain training of models.

First, install the example dependencies

pip install '.[dev,example]'

Download the Iris dataset

./data/get-iris-data.sh

Run the example:

python -m examples.iris train

You should see something like this:

loading data...
final parameters [-118, 912, -884, 408, -20, -189, 68, 28, -1407, -641, 1407, 2336]
predicting...
accuracy: 96.0

You can also print the iris model circuits as python code:

> python -m examples.iris print
def predict(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x17, x22, x27):
    x13 = x12
    x14 = x12
    x18 = x17

    ⋮
    <snipped>

Adding a backend

If you want to add your own backend, you don't need to work with diagrams (circuits) directly. Instead, you can use the polycirc.ast module to transform a circuit to a generic AST with polycirc.ast.diagram_to_ast.

from polycirc.ast import diagram_to_ast
c = make_some_circuit()
diagram_to_ast(c, 'function_name')

From this generic AST, you can then convert your arithmetic circuit to your target language.

For an in depth example, see the provided Leo backend example and the docs

Running Tests

Install dev dependencies

pip install '.[dev]'

and run tests

pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yarrow_polycirc-0.0.1.0.tar.gz (15.6 kB view details)

Uploaded Source

Built Distribution

yarrow_polycirc-0.0.1.0-py3-none-any.whl (19.3 kB view details)

Uploaded Python 3

File details

Details for the file yarrow_polycirc-0.0.1.0.tar.gz.

File metadata

  • Download URL: yarrow_polycirc-0.0.1.0.tar.gz
  • Upload date:
  • Size: 15.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for yarrow_polycirc-0.0.1.0.tar.gz
Algorithm Hash digest
SHA256 563d6e62d2cc1138f7281ffc2616065865f586e169c4e6c8bbde9fef5c8bded9
MD5 3f140cc77c8fb0aabf28fa356b6448a8
BLAKE2b-256 f7c630cba770aeabba6e4f3fce5c748cb21d97f46d7557a1759b9ec5f12843b0

See more details on using hashes here.

File details

Details for the file yarrow_polycirc-0.0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for yarrow_polycirc-0.0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e0bca521bf9fd35f7e3400142db017cceeb109715b0a49449983adb651433962
MD5 365aac1a1c411282832407425980c7aa
BLAKE2b-256 a5cd8788394091825d3c24e9f502046d94174e5418df1c1855d4a58f94154679

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page