A simple and effective Python wrapper around the Open Geo DB managed by YAT
Project description
YAT Geo DB
An elegantly simple Geo Reference manager with managed database of US, Canada and Mexico. Quickly perform auto-complete style fuzzy search, fetch record details and search a mile radius around a specific place.
Geo DB file lists available at https://yat-geo-db.sfo3.digitaloceanspaces.com/
Install
With Python 3.7 or greater install the package with simple pip command.
pip install yat-geo-db
Usage
The manager utilizes two flat files maintained by YAT available at <location>
.
On initial load those files will be downloaded to local machined and stored on
machine as a form of cache. You can specify a specific version denoted by date
or utilize the current version.
Import and load data
from yat_geo_db import GeoManager as GeoManagerImport
GeoManager = GeoManagerImport()
GeoManager.load_data(
force_db_fetch= False, cache_local=True, compressed=True
)
Refresh local data (current version)
from yat_geo_db import GeoManager as GeoManagerImport
GeoManager = GeoManagerImport()
GeoManager.load_data(force_db_fetch=True)
Perform Auto-complete style search
search_param = "Nashvil"
filters = {"ref_data.state_prov": "TN", "ref_data.country": "US"}
fuzzy_res = GeoManager.fuzzy_search(
search_param, num_results=2, filters=filters
)
print([(value["value"], value["id"]) for value in fuzzy_res])
>>> [('Nashville, TN', 'us__tn__nashville'), ('Nashville Metro Area, TN', 'nashville_tn_us_metro')]
Apply filters for any element in shape object including geo_type
and ref_data
,
latter allowing to refine search to specific country or state.
search_param = "Nashvil"
filters = {"geo_type": "ZipCode", "ref_data.country": "US"}
fuzzy_res = GeoManager.fuzzy_search(
search_param, num_results=2, filters=filters
)
print([(value["value"], value["id"]) for value in fuzzy_res])
>>> []
Fetch a shape object by the reference code. All reference codes follow a hierarchical
structure, for below example <country>__<state>__<name with _ seperator>
.
reference_code = 'us__tn__nashville'
res = GeoManager.get_shape_by_ref_code(reference_code=reference_code)
print(res)
>>> {'value': 'Nashville, TN',
>>> 'clean_value': 'nashville tn',
>>> 'id': 6818,
>>> 'area': 0.0,
>>> 'bbox': {'ll_latitude': '36.165890',
>>> 'ur_latitude': '36.165890',
>>> 'll_longitude': '-86.784440',
>>> 'ur_longitude': '-86.784440'},
>>> 'geo_type': 'City',
>>> 'latitude': 36.16589,
>>> 'ref_data': {'city': 'Nashville',
>>> 'country': 'US',
>>> 'zip_code': '37222',
>>> 'state_prov': 'TN'},
>>> 'longitude': -86.78444,
>>> 'population': 530852,
>>> 'is_zip_code': False,
>>> 'is_aggregate': False,
>>> 'long_display': 'Nashville, TN 37222',
>>> 'short_display': 'Nashville, TN',
>>> 'primary_source': None,
>>> 'reference_code': 'us__tn__nashville',
>>> 'primary_timezone': 'America/Chicago',
>>> 'related_shape_id': 6718,
>>> 'primary_source_id': None,
>>> 'is_three_digit_zip_code': False}
Perform radius search around a Geo Object, utilizing a reference code, radius in
miles and indicator to return results within the same country. Results returned
are a list of Geo Shape IDs or with full_results=True
a full list of Geo Objects
returned.
reference_code = 'us__tn__nashville'
res = GeoManager.radius_search(
reference_code=reference_code, radius=10, country_exact=True
)
print(res)
>>> [6702, 6831, 142898, 142897, 142895, 142901, 142903, 142904, 142905, 142910, 142893, 119979, 104924, 258833, 259091, 118948,
>>> 118950, 119199, 119208, 119565, 119569, 119570, 119978, 259331, 239701, 242429, 6764, 98, 6609, 6818, 242049, 6612, 6621,
>>> 142899, 142900, 241027, 119206, 119572, 133787, 119196, 119567, 119977, 6622, 134214, 134217, 143024, 179468, 133797, 133808,
>>> 119980, 119201, 119204, 119205, 119210, 142902, 142906, 142907, 142908, 142909]
Example
For an example microservice implementation with Flask check out this repository.
Of try out the free API with documentation here YAT Demo.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file yat_geo_db-1.1.1.tar.gz
.
File metadata
- Download URL: yat_geo_db-1.1.1.tar.gz
- Upload date:
- Size: 13.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c2927fb68b2516cb62cda2f2522074f5c575c99233764683a5c85866c51807b4 |
|
MD5 | ae819093d92aef9f94d88c277dc2e43d |
|
BLAKE2b-256 | e6bdb09e978509ffdef6368febe9e85470ec267ad02c51555cec4080536ff2d8 |
File details
Details for the file yat_geo_db-1.1.1-py3-none-any.whl
.
File metadata
- Download URL: yat_geo_db-1.1.1-py3-none-any.whl
- Upload date:
- Size: 12.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 043d1742fa83f14c022a596c25e85a78074904fc337f8455af9ddb2d3837a73f |
|
MD5 | 73cf00020d8bd1280c510fa95eb9963f |
|
BLAKE2b-256 | 4e47e98948ffab6efc86ff6c1a41db9cdba4ced30e3c658aa4f34802bac28be3 |