Skip to main content

A suite of visual analysis and diagnostic tools for machine learning.

Project description

Visualizers

Yellowbrick

Yellowbrick is a suite of visual analysis and diagnostic tools designed to facilitate machine learning with Scikit-Learn. The library implements a new core API object, the “Visualizer” that is an Scikit-Learn estimator: an object that learns from data. Like transformers or models, visualizers learn from data by creating a visual representation of the model selection workflow.

Visualizers allow users to steer the model selection process, building intuition around feature engineering, algorithm selection, and hyperparameter tuning. For example, visualizers can help diagnose common problems surrounding model complexity and bias, heteroscedasticity, underfit and overtraining, or class balance issues. By applying visualizers to the model selection workflow, Yellowbrick allows you to steer predictive models to more successful results, faster.

Please see the full documentation at: http://scikit-yb.org/

Visualizers

Visualizers are estimators (objects that learn from data) whose primary objective is to create visualizations that allow insight into the model selection process. In Scikit-Learn terms, they can be similar to transformers when visualizing the data space or wrap an model estimator similar to how the “ModelCV” (e.g. RidgeCV, LassoCV) methods work. The primary goal of Yellowbrick is to create a sensical API similar to Scikit-Learn. Some of our most popular visualizers include:

Feature Visualization

  • Rank2D: pairwise ranking of features to detect relationships

  • Parallel Coordinates: horizontal visualization of instances

  • Radial Visualization: separation of instances around a circular plot

Classification Visualization

  • Class Balance: see how the distribution of classes affects the model

  • Classification Report: visual representation of precision, recall, and F1

  • ROC/AUC Curves: receiver operator characteristics and area under the curve

  • Confusion Matrices: visual description of class decision making

Regression Visualization

  • Prediction Error Plots: find model breakdowns along the domain of the target

  • Residuals Plot: show the difference in residuals of training and test data

  • Alpha Selection: show how the choice of alpha influences regularization

Clustering Visualization

  • K-Elbow Plot: select k using the elbow method and various metrics

  • Silhouette Plot: select k by visualizing silhouette coefficient values

Text Visualization

  • Term Frequency: visualize the frequency distribution of terms in the corpus

  • TSNE: use stochastic neighbor embedding to project documents.

… and more! Visualizers are being added all the time; be sure to check the examples (or even the develop branch) and feel free to contribute your ideas for new Visualizers!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yellowbrick-0.4.2.tar.gz (17.7 MB view details)

Uploaded Source

Built Distribution

yellowbrick-0.4.2-py2.py3-none-any.whl (123.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file yellowbrick-0.4.2.tar.gz.

File metadata

  • Download URL: yellowbrick-0.4.2.tar.gz
  • Upload date:
  • Size: 17.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for yellowbrick-0.4.2.tar.gz
Algorithm Hash digest
SHA256 745fdc3315e06b3dbd66d943645ffffa06df4ff6ae19e3786fb3ced72fd779ab
MD5 42519a8a41861af58fe4fa7e5f56371e
BLAKE2b-256 de5dcb9fd3a9d08a39a839777e620d9b7f5614ffc5e57be70bf900a929074b92

See more details on using hashes here.

File details

Details for the file yellowbrick-0.4.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for yellowbrick-0.4.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 54b56eee4c4da13a99e62aa0bd928c5de8288a2b527ef52fd0b9bf3b403b343e
MD5 3eaf17cc59b2b889a1b065c5da1db8bc
BLAKE2b-256 dcd6211662e4815f1470fc0997d3e9f94f1e312086a9ccc152f5d338d0f9fb50

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page