Skip to main content

A suite of visual analysis and diagnostic tools for machine learning.

Project description

Visualizers

Yellowbrick

Yellowbrick is a suite of visual analysis and diagnostic tools designed to facilitate machine learning with Scikit-Learn. The library implements a new core API object, the “Visualizer” that is an Scikit-Learn estimator: an object that learns from data. Like transformers or models, visualizers learn from data by creating a visual representation of the model selection workflow.

Visualizers allow users to steer the model selection process, building intuition around feature engineering, algorithm selection, and hyperparameter tuning. For example, visualizers can help diagnose common problems surrounding model complexity and bias, heteroscedasticity, underfit and overtraining, or class balance issues. By applying visualizers to the model selection workflow, Yellowbrick allows you to steer predictive models to more successful results, faster.

Please see the full documentation at: http://scikit-yb.org/ particularly the quick start guide

Visualizers

Visualizers are estimators (objects that learn from data) whose primary objective is to create visualizations that allow insight into the model selection process. In Scikit-Learn terms, they can be similar to transformers when visualizing the data space or wrap an model estimator similar to how the “ModelCV” (e.g. RidgeCV, LassoCV) methods work. The primary goal of Yellowbrick is to create a sensical API similar to Scikit-Learn. Some of our most popular visualizers include:

Feature Visualization

  • Rank Features: single or pairwise ranking of features to detect relationships

  • Parallel Coordinates: horizontal visualization of instances

  • Radial Visualization: separation of instances around a circular plot

  • PCA Projection: projection of instances based on principal components

  • Feature Importances: rank features based on their in-model performance

  • Scatter and Joint Plots: direct data visualization with feature selection

Classification Visualization

  • Class Balance: see how the distribution of classes affects the model

  • Class Prediction Error: shows error and support in classification

  • Classification Report: visual representation of precision, recall, and F1

  • ROC/AUC Curves: receiver operator characteristics and area under the curve

  • Confusion Matrices: visual description of class decision making

Regression Visualization

  • Prediction Error Plots: find model breakdowns along the domain of the target

  • Residuals Plot: show the difference in residuals of training and test data

  • Alpha Selection: show how the choice of alpha influences regularization

Clustering Visualization

  • K-Elbow Plot: select k using the elbow method and various metrics

  • Silhouette Plot: select k by visualizing silhouette coefficient values

Text Visualization

  • Term Frequency: visualize the frequency distribution of terms in the corpus

  • TSNE: use stochastic neighbor embedding to project documents.

… and more! Visualizers are being added all the time; be sure to check the examples (or even the develop branch) and feel free to contribute your ideas for new Visualizers!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yellowbrick-0.6.tar.gz (21.5 MB view details)

Uploaded Source

Built Distribution

yellowbrick-0.6-py2.py3-none-any.whl (182.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file yellowbrick-0.6.tar.gz.

File metadata

  • Download URL: yellowbrick-0.6.tar.gz
  • Upload date:
  • Size: 21.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for yellowbrick-0.6.tar.gz
Algorithm Hash digest
SHA256 f0d15b976661f6d10c4c197177ec4e3fcf48cd505b35ede9b53db4976b0df8e2
MD5 6f1eceda17a1bd93b60dcb2818812009
BLAKE2b-256 a09a0c390ada9ebecbcf59518af61763135d36897c579dba9ab5f6682c46c0e2

See more details on using hashes here.

File details

Details for the file yellowbrick-0.6-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for yellowbrick-0.6-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 312c6c2934d79707dd95bf09f2b884d30bc4ba4130be3f102e01e6d10ff95581
MD5 6614ff708e4378408c97a462d9c4b80d
BLAKE2b-256 10a0d13295d0c4f9130a1881831d3bd00a255e7c54e1fa512ca6599037a49b9b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page