Skip to main content

Yahoo! Finance market data downloader

Project description

Yahoo! Finance-ng python3 / pandas market data downloader

Build Python version PyPi version PyPi status PyPi downloads Star this repo Follow me on twitter

Ever since Yahoo! finance decommissioned their historical data API, many programs that relied on it to stop working.

yfinanceng aimes to solve this problem by offering a reliable, threaded, and Pythonic way to download historical market data from Yahoo! finance.

NOTE

The library was originally named yfinance, but I’ve since renamed it to yfinanceng as I no longer consider it a mere “fix”, and the author is not promptly maintaining it or merging PRs.

Changelog »


Quick Start

The Ticker module

The Ticker module, which allows you to access ticker data in amore Pythonic way:

import yfinanceng as yf

msft = yf.Ticker("MSFT")

# get stock info
msft.info

# get historical market data
hist = msft.history(period="max")

# show actions (dividends, splits)
msft.actions

# show dividends
msft.dividends

# show splits
msft.splits

# show financials
msft.financials
msft.quarterly_financials

# show major holders
msft.major_holders

# show institutional holders
msft.institutional_holders

# show balance heet
msft.balance_sheet
msft.quarterly_balance_sheet

# show cashflow
msft.cashflow
msft.quarterly_cashflow

# show earnings
msft.earnings
msft.quarterly_earnings

# show sustainability
msft.sustainability

# show analysts recommendations
msft.recommendations

# show next event (earnings, etc)
msft.calendar

# show ISIN code - *experimental*
# ISIN = International Securities Identification Number
msft.isin

# show options expirations
msft.options

# get option chain for specific expiration
opt = msft.option_chain('YYYY-MM-DD')
# data available via: opt.calls, opt.puts

If you want to use a proxy server for downloading data, use:

import yfinanceng as yf

msft = yf.Ticker("MSFT")

msft.history(..., proxy="PROXY_SERVER")
msft.get_actions(proxy="PROXY_SERVER")
msft.get_dividends(proxy="PROXY_SERVER")
msft.get_splits(proxy="PROXY_SERVER")
msft.get_balance_sheet(proxy="PROXY_SERVER")
msft.get_cashflow(proxy="PROXY_SERVER")
msgt.option_chain(..., proxy="PROXY_SERVER")
...

To initialize multiple Ticker objects, use

import yfinanceng as yf

tickers = yf.Tickers('msft aapl goog')
# ^ returns a named tuple of Ticker objects

# access each ticker using (example)
tickers.msft.info
tickers.aapl.history(period="1mo")
tickers.goog.actions

Fetching data for multiple tickers

import yfinanceng as yf
data = yf.download("SPY AAPL", start="2017-01-01", end="2017-04-30")

I’ve also added some options to make life easier :)

data = yf.download(  # or pdr.get_data_yahoo(...
        # tickers list or string as well
        tickers = "SPY AAPL MSFT",

        # use "period" instead of start/end
        # valid periods: 1d,5d,1mo,3mo,6mo,1y,2y,5y,10y,ytd,max
        # (optional, default is '1mo')
        period = "ytd",

        # fetch data by interval (including intraday if period < 60 days)
        # valid intervals: 1m,2m,5m,15m,30m,60m,90m,1h,1d,5d,1wk,1mo,3mo
        # (optional, default is '1d')
        interval = "1m",

        # group by ticker (to access via data['SPY'])
        # (optional, default is 'column')
        group_by = 'ticker',

        # adjust all OHLC automatically
        # (optional, default is False)
        auto_adjust = True,

        # download pre/post regular market hours data
        # (optional, default is False)
        prepost = True,

        # use threads for mass downloading? (True/False/Integer)
        # (optional, default is True)
        threads = True,

        # proxy URL scheme use use when downloading?
        # (optional, default is None)
        proxy = None
    )

pandas_datareader override

If your code uses pandas_datareader and you want to download data faster, you can “hijack” pandas_datareader.data.get_data_yahoo() method to use yfinanceng while making sure the returned data is in the same format as pandas_datareader’s get_data_yahoo().

from pandas_datareader import data as pdr

import yfinanceng as yf
yf.pdr_override() # <== that's all it takes :-)

# download dataframe
data = pdr.get_data_yahoo("SPY", start="2017-01-01", end="2017-04-30")

Installation

Install yfinanceng using pip:

$ pip install yfinanceng --upgrade --no-cache-dir

Install yfinanceng using conda:

$ conda install -c larroy yfinanceng

Requirements

Optional (if you want to use pandas_datareader)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yfinanceng-0.1.58.tar.gz (20.0 kB view details)

Uploaded Source

Built Distribution

yfinanceng-0.1.58-py2.py3-none-any.whl (22.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file yfinanceng-0.1.58.tar.gz.

File metadata

  • Download URL: yfinanceng-0.1.58.tar.gz
  • Upload date:
  • Size: 20.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for yfinanceng-0.1.58.tar.gz
Algorithm Hash digest
SHA256 6351c9be71ca786a1cacef59a85a2c05e6adddc1c0bf1eb3fe49cfa106a7af69
MD5 1eb87899cd820ea45e724ecdae48581c
BLAKE2b-256 4393527f1bb2d459ba2304e6f258e8b57610ff60c4ff8099513dd44374df1a72

See more details on using hashes here.

File details

Details for the file yfinanceng-0.1.58-py2.py3-none-any.whl.

File metadata

  • Download URL: yfinanceng-0.1.58-py2.py3-none-any.whl
  • Upload date:
  • Size: 22.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for yfinanceng-0.1.58-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 45c51a20ade36e01cea20c5d23380c0022529c291719748813e435ed14a164a7
MD5 ffe7612c95aaf78cad0ef209a99dba67
BLAKE2b-256 81637599efd052a7e20e8f099708b8efc6a75b6281089cb635ddc3286387c4e3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page