based on tensorflow
Project description
some simple functions based on tensorflow
#####################
Simple Example here
#####################
import tensorflow as tf
from yfml.layers import *
from yfml.train import *
from yfml.utils import *
from yfml.quick_build import *
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
train_data, train_label = mnist.train.next_batch(50000)
training_data = Data(train_data, train_label)
x = fl_holder([None, 784])
y = fl_holder([None, 10])
if_training = bool_holder()
x_ = reshape(x, [-1, 28, 28, 1])
final = mix_stack('stack', x_, types=['conv2d', 'maxpool2d', 'conv2d', 'maxpool2d', 'fc', 'fc'],
shapes=[16, 2, 32, 2, 256, 10], use_batch_norm=False, if_training=if_training,
activation_fn='relu', last_activation_fn='softmax')
loss = loss_fn(final, y)
opt = optimize(loss, 0.001, optimizer='adam', regularizer=['l2', 0.001])
accuracy = compute_accuracy(final, y)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for i in range(1000):
training_data.shuffle()
iter = 50000//100
avg_acc = 0.
for j in range(iter):
xs, ys = training_data.next_batch(100)
acc, _ = sess.run([accuracy, opt], {x: xs, y: ys, if_training:True})
avg_acc += acc/iter
print('accuracy is : ', avg_acc)
#####################
Simple Example here
#####################
import tensorflow as tf
from yfml.layers import *
from yfml.train import *
from yfml.utils import *
from yfml.quick_build import *
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
train_data, train_label = mnist.train.next_batch(50000)
training_data = Data(train_data, train_label)
x = fl_holder([None, 784])
y = fl_holder([None, 10])
if_training = bool_holder()
x_ = reshape(x, [-1, 28, 28, 1])
final = mix_stack('stack', x_, types=['conv2d', 'maxpool2d', 'conv2d', 'maxpool2d', 'fc', 'fc'],
shapes=[16, 2, 32, 2, 256, 10], use_batch_norm=False, if_training=if_training,
activation_fn='relu', last_activation_fn='softmax')
loss = loss_fn(final, y)
opt = optimize(loss, 0.001, optimizer='adam', regularizer=['l2', 0.001])
accuracy = compute_accuracy(final, y)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for i in range(1000):
training_data.shuffle()
iter = 50000//100
avg_acc = 0.
for j in range(iter):
xs, ys = training_data.next_batch(100)
acc, _ = sess.run([accuracy, opt], {x: xs, y: ys, if_training:True})
avg_acc += acc/iter
print('accuracy is : ', avg_acc)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file yfml-0.1.0-py2.py3-none-any.whl.
File metadata
- Download URL: yfml-0.1.0-py2.py3-none-any.whl
- Upload date:
- Size: 7.2 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/38.2.3 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/3.5.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
d6c8435e6cbc27829f0607d110d0e91335a312f345d01b14d7fe49d07a8f2fae
|
|
| MD5 |
606a57262011edd5c2ab70f16b8cbd8f
|
|
| BLAKE2b-256 |
fa33128db148a74270948aebbf892d57c40d55f1410476b145f995f31c594c97
|