Skip to main content

based on tensorflow

Project description

some simple functions based on tensorflow

#####################
Simple Example here

#####################
import tensorflow as tf
from yfml.layers import *
from yfml.train import *
from yfml.utils import *
from yfml.quick_build import *
from tensorflow.examples.tutorials.mnist import input_data


mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
train_data, train_label = mnist.train.next_batch(50000)
training_data = Data(train_data, train_label)
x = fl_holder([None, 784])
y = fl_holder([None, 10])
if_training = bool_holder()
x_ = reshape(x, [-1, 28, 28, 1])
final = mix_stack('stack', x_, types=['conv2d', 'maxpool2d', 'conv2d', 'maxpool2d', 'fc', 'fc'],
shapes=[16, 2, 32, 2, 256, 10], use_batch_norm=False, if_training=if_training,
activation_fn='relu', last_activation_fn='softmax')
loss = loss_fn(final, y)
opt = optimize(loss, 0.001, optimizer='adam', regularizer=['l2', 0.001])
accuracy = compute_accuracy(final, y)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for i in range(1000):
training_data.shuffle()
iter = 50000//100
avg_acc = 0.
for j in range(iter):
xs, ys = training_data.next_batch(100)
acc, _ = sess.run([accuracy, opt], {x: xs, y: ys, if_training:True})
avg_acc += acc/iter
print('accuracy is : ', avg_acc)


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

yfml-0.1.0-py2.py3-none-any.whl (7.2 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page