Skip to main content

Wrapper over Yolo5Face for a more convenient inference.

Project description

Wrapper over YoloV5Face

from yolo5face.get_model import get_model

model = get_model("yolov5n", gpu=-1, target_size=512, min_face=24)

image = cv2.imread(<IMAGE_PATH>)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

boxes, key_points = model(image)

  • gpu - GPU number, -1 or cpu for CPU
  • target_size - min size of the target_image
  • min_face - minimum face size in pixels. All faces that have side smaller than min_face will be ignored.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yolo5face-0.0.3.tar.gz (17.5 kB view details)

Uploaded Source

File details

Details for the file yolo5face-0.0.3.tar.gz.

File metadata

  • Download URL: yolo5face-0.0.3.tar.gz
  • Upload date:
  • Size: 17.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for yolo5face-0.0.3.tar.gz
Algorithm Hash digest
SHA256 9a7e0a261915d37f8405635446fdf6dd2fcc4c1e59de86d4c9016f77f687757f
MD5 3bf3b725ab69f2951a2f1b93a0c82312
BLAKE2b-256 8c1d44a80ab80f828ca8f4fdb8b0c8fa492a8ae3a114c23374d921828bfe7262

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page