Run YOLOv10 model with ONNX Runtime
Project description
ONNX YOLOv10 Object Detection
Python scripts performing object detection using the YOLOv10 model in ONNX.
[!CAUTION] I skipped adding the pad to the input image when resizing, which might affect the accuracy of the model if the input image has a different aspect ratio compared to the input size of the model. Always try to get an input size with a ratio close to the input images you will use.
Requirements
- Check the requirements.txt file.
- For ONNX, if you have a NVIDIA GPU, then install the onnxruntime-gpu, otherwise use the onnxruntime library.
Installation
pip install yolov10-onnx
Or, clone this repository:
git clone https://github.com/ibaiGorordo/ONNX-YOLOv10-Object-Detection.git
cd ONNX-YOLOv10-Object-Detection
pip install -r requirements.txt
ONNX Runtime
For Nvidia GPU computers:
pip install onnxruntime-gpu
Otherwise:
pip install onnxruntime
ONNX model
- If the model file is not found in the models directory, it will be downloaded automatically from the Official Repo.
- Available models: yolov10n.onnx, yolov10s.onnx, yolov10m.onnx, yolov10b.onnx, yolov10l.onnx, yolov10x.onnx
Original YOLOv10 model
The original YOLOv10 model can be found in this repository: https://github.com/THU-MIG/yolov10
- The License of the models is AGPL-3.0 license: https://github.com/THU-MIG/yolov10/blob/main/LICENSE
Examples
- Image inference:
python image_object_detection.py
- Webcam inference:
python webcam_object_detection.py
- Video inference: https://youtu.be/hz9PYZF4ax4
python video_object_detection.py
References:
- YOLOv10 model: https://github.com/THU-MIG/yolov10
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file yolov10_onnx-0.3.0.tar.gz
.
File metadata
- Download URL: yolov10_onnx-0.3.0.tar.gz
- Upload date:
- Size: 5.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 28bdba98494f9eb61016a3c0f98581acc5a014688a4174b3be49b76e535bd927 |
|
MD5 | 1168f46f001ffb9f34d75bb0adcd450c |
|
BLAKE2b-256 | c22854f2d965dc98da37000767c0e25ddbe186c14d5a940b2738717fc6d01e2b |
File details
Details for the file yolov10_onnx-0.3.0-py3-none-any.whl
.
File metadata
- Download URL: yolov10_onnx-0.3.0-py3-none-any.whl
- Upload date:
- Size: 6.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7cac319c39f9357fe40b54b5bc1f4b33b346804b47b27de26dc89e568576ad8d |
|
MD5 | 5f1f84428da481dfaa14ce014a010a4b |
|
BLAKE2b-256 | 927d79f40cb97111bb17855511ee4642e1c2879832d6b5f34c4db1a36730d1f9 |