Skip to main content

YOLOv3 implementation in TensorFlow 2.x

Project description

CI

YOLOv3-TF

YOLOv3 implementation in TensorFlow 2.x

Installation

pip install yolov3-tf

Depends on tensorflow >=2.3.0 <=2.9.1

Usage

The package consists of three core modules -

  • dataset
  • models
  • utils

Dataset

The dataset.py module is for loading and transforming the tfrecords for object detection. The examples in the input tfrecords must match the parsing schema.

import yolov3_tf.dataset as dataset
train_dataset = dataset.load_tfrecord_dataset(tfrecords_path)
train_dataset = train_dataset.batch(batch_size)
train_dataset = train_dataset.map(
    lambda x, y: (
        dataset.transform_images(x, image_dim),
        dataset.transform_targets(y, anchors, anchor_masks, image_dim),
    )
)

Models

The models.py module consists of implementation of two YOLOv3 and YOLOv3 tiny in Tesnsorflow.

from yolov3_tf.models import YoloV3, YoloV3Tiny
model = YoloV3(image_dim = 416, training=True, classes=10)

Utils

The utils.py module provides some common functions for training YOLOv3 model, viz., loading weights, freezing layers, drawing boxes on images, compute iou

# convert weights 
from yolov3_tf.models import YoloV3, YoloV3Tiny
from yolov3_tf import utils

yolo = YoloV3()
utils.load_darknet_weights(yolo, weights_path, is_tiny=False)
yolo.save_weights(converted_weights_path)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yolov3-tf-0.1.7.tar.gz (12.9 kB view details)

Uploaded Source

Built Distribution

yolov3_tf-0.1.7-py3-none-any.whl (14.3 kB view details)

Uploaded Python 3

File details

Details for the file yolov3-tf-0.1.7.tar.gz.

File metadata

  • Download URL: yolov3-tf-0.1.7.tar.gz
  • Upload date:
  • Size: 12.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.5 CPython/3.8.13 Linux/5.15.0-1019-azure

File hashes

Hashes for yolov3-tf-0.1.7.tar.gz
Algorithm Hash digest
SHA256 f662b379273d2bd5154e2445dceb5a6dd892a214744d0c0e5d641402d87f20c7
MD5 3569a3a9c5b8ae09cb45feff9fe9a34d
BLAKE2b-256 267d0aaf6ff70dbd01c9464e11d89980832514851922b4601a96ccb4c73c0b38

See more details on using hashes here.

File details

Details for the file yolov3_tf-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: yolov3_tf-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 14.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.5 CPython/3.8.13 Linux/5.15.0-1019-azure

File hashes

Hashes for yolov3_tf-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 0c58d17383f5e54d7fefa901a8be7775b884f3091aa1c02329a17e282c7120f4
MD5 abd84ace5ec111888acc3e9853d7eaa5
BLAKE2b-256 9bd120f594a59aedc5076d6f921bff3ae97a7d75110da345b48ff0a948e01e81

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page