No project description provided
Project description
tensorflow-yolov4
python3 -m pip install yolov4
YOLOv4 Implemented in Tensorflow 2. Convert YOLOv4, YOLOv3, YOLO tiny .weights to .pb, .tflite and trt format for tensorflow, tensorflow lite, tensorRT.
Download yolov4.weights file: https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT
Performance
Help
>>> from yolov4.tf import YOLOv4
>>> help(YOLOv4)
Inference
tensorflow
from yolov4.tf import YOLOv4
yolo = YOLOv4()
yolo.classes = "/home/hhk7734/tensorflow-yolov4/data/classes/coco.names"
yolo.make_model()
yolo.load_weights("/home/hhk7734/Desktop/yolov4.weights", weights_type="yolo")
yolo.inference(
media_path="/home/hhk7734/tensorflow-yolov4/data/kite.jpg",
cv_waitKey_delay=1000,
)
tensorflow lite
import yolov4.tflite as yolo
detector = yolo.YOLOv4(
names_path="/home/hhk7734/tensorflow-yolov4/data/classes/coco.names",
tflite_path="/home/hhk7734/Desktop/yolov4.tflite",
)
detector.inference(
media_path="/home/hhk7734/tensorflow-yolov4/data/road.mp4",
is_image=False,
cv_waitKey_delay=1,
)
Training
from yolov4.tf import YOLOv4
yolo = YOLOv4()
yolo.classes = "/home/hhk7734/tensorflow-yolov4/data/classes/coco.names"
yolo.input_size = 416
yolo.make_model()
yolo.load_weights("/home/hhk7734/Desktop/yolov4.conv.137", weights_type="yolo")
yolo.train(
train_annote_path="/home/hhk7734/tensorflow-yolov4/data/dataset/val2017.txt",
test_annote_path="/home/hhk7734/tensorflow-yolov4/data/dataset/val2017.txt",
)
from yolov4.tf import YOLOv4
yolo = YOLOv4()
yolo.classes = "/home/hhk7734/darknet/data/class.names"
yolo.input_size = 416
yolo.make_model()
yolo.train(
train_annote_path="/home/hhk7734/darknet/data/train.txt",
test_annote_path="/home/hhk7734/darknet/data/train.txt",
dataset_type="yolo",
)
tensorflow-yolov4 (0.9.0) unstable; urgency=medium
- tf: modify hyperparameters as properties
- tf: add weights_type argument to load_weights()
- core: utils: implement _np_fromfile()
- core: utils: implement a way to partially load weights
- tf: train: move learning_rate_* to argument
- core: move YOLOConv2D to common
- core: common: remove bn argument of YOLOConv2D
- core: utils: refactor yolo_conv2d_set_weights
- core: yolov4: refactor YOLOv4
- core: utils: refactor load_weights
- tf: refactor make_model
- yolov4: change YoloV4 to YOLOv4
-- Hyeonki Hong hhk7734@gmail.com Wed, 24 Jun 2020 02:58:27 +0900
tensorflow-yolov4 (0.8.0) unstable; urgency=medium
- core: use tf.keras.layers.UpSampling2D
- core: refactor Mish
- core: common: remove residual_block
- core: remove sequential in _ResBlock
- core: backbone: Set LeakyReLU's alpha to 0.1
-- Hyeonki Hong hhk7734@gmail.com Tue, 23 Jun 2020 02:21:01 +0900
tensorflow-yolov4 (0.7.0) unstable; urgency=medium
- tf: fix to proceed to the next step even if an error occurs
- tf: modify video_interval_ms to cv_waitKey_delay
- core: backbone: refactor CSPDarknet53
- core: utils: implement csp_darknet53_set_weights()
-- Hyeonki Hong hhk7734@gmail.com Mon, 22 Jun 2020 23:01:32 +0900
tensorflow-yolov4 (0.6.0) unstable; urgency=medium
- tf: set first_step_epochs according to the weight usage
- tf: fix syntax error
-- Hyeonki Hong hhk7734@gmail.com Fri, 19 Jun 2020 17:09:57 +0900
tensorflow-yolov4 (0.5.0) unstable; urgency=medium
- core: dataset: add yolo type
- tf: add dataset_type parameter to YoloV4.train
- tf: add epochs parameter to train
- tf: add save_interval parameter to train
-- Hyeonki Hong hhk7734@gmail.com Fri, 19 Jun 2020 14:30:50 +0900
tensorflow-yolov4 (0.4.0) unstable; urgency=medium
- core: dataset: remove cfg module
- tf: implement YoloV4.train
-- Hyeonki Hong hhk7734@gmail.com Thu, 11 Jun 2020 17:45:44 +0900
tensorflow-yolov4 (0.3.0) unstable; urgency=medium
- core: utils: use numpy instead of tensorflow
- pypi: remove install_requires and change to manual installation
- yolov4: add video_interval_ms
-- Hyeonki Hong hhk7734@gmail.com Mon, 08 Jun 2020 23:59:41 +0900
tensorflow-yolov4 (0.2.0) unstable; urgency=medium
- pylint: create .pylintrc and run black
- core: remove config.py
- yolov4: change tfyolov4 to yolov4
- yolov4: remove detect**.py and implement YoloV4.inference
-- Hyeonki Hong hhk7734@gmail.com Mon, 08 Jun 2020 02:20:49 +0900
tensorflow-yolov4 (0.1.0) unstable; urgency=medium
- yolov4: fork from 'hunglc007/tensorflow-yolov4-tflite'
-- Hyeonki Hong hhk7734@gmail.com Fri, 05 Jun 2020 20:17:45 +0900
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file yolov4-0.9.0.tar.gz
.
File metadata
- Download URL: yolov4-0.9.0.tar.gz
- Upload date:
- Size: 18.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 97ccbafa583bf16e8c2b7bb233b5e1e6ffba5ceea468301d749631a88f5fb073 |
|
MD5 | 55c6117d932f39ca64b49ab80cdd5663 |
|
BLAKE2b-256 | 3072525f5434576cfe5d3e6307e503e314f639f2d1db1b87999466507a7de988 |