Skip to main content

YOLOv5 ONNX example by OpenCV DNN.

Project description

YOLOv5-ONNX read example by OpenCV DNN.

If you wanna export to onnx format, please refer: https://github.com/ultralytics/yolov5

Install package

pip install yolov5-onnx-cv

Code example:

import numpy as np
from yolov5_onnx_cv import YOLOv5_ONNX_CV
import cv2


# Just inherit YOLOv5_ONNX_CV and define your class_names and class_colors
class YOLOv5(YOLOv5_ONNX_CV):

    # Define coco class names
    class_names = [
        'person', 'bicycle', 'car', 'motorcycle', 'airplane', 
        'bus', 'train', 'truck', 'boat', 'traffic light', 
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 
        'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 
        'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 
        'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 
        'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 
        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 
        'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 
        'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 
        'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 
        'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 
        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 
        'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
    ]

    # Random to generate colors
    class_colors = [(int(i[0]), int(i[1]), int(i[2])) for i in np.random.randint(256, size=(len(class_names), 3))]


# Simple camera read
def load_capture():
    capture = cv2.VideoCapture(1)
    capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
    capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
    return capture


if __name__ == '__main__':
    # Load camera
    capture = load_capture()
    
    # Load checkpoint from any path. (onnx only)
    model = YOLOv5('tests/yolov5s.onnx', (640, 640), 0.5)

    while True:
        # Get camera frame
        success, frame = capture.read()
        if not success:
            print('Open camera fail.')
            break

        # Inference all of output result
        preds = model(frame)
        for pred in preds:
            print(pred.id, pred.name, pred.conf, pred.box)

        # Show labeled box result
        model.show_label_boxes() 
        
        # or you can get labeled box result
        # img = model.get_label_boxes_image()

        # Any key to quit.
        if cv2.waitKey(1) > -1:
            print('finished by user')
            break

    capture.release()

Demo example: image info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yolov5_onnx_cv-0.0.5.tar.gz (4.7 kB view details)

Uploaded Source

Built Distribution

yolov5_onnx_cv-0.0.5-py3-none-any.whl (5.2 kB view details)

Uploaded Python 3

File details

Details for the file yolov5_onnx_cv-0.0.5.tar.gz.

File metadata

  • Download URL: yolov5_onnx_cv-0.0.5.tar.gz
  • Upload date:
  • Size: 4.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.8

File hashes

Hashes for yolov5_onnx_cv-0.0.5.tar.gz
Algorithm Hash digest
SHA256 c108d7238a4ae2e2bc734c628bb64ef038071b25f51e5ed0b7f7ace1ef47d1b4
MD5 d2e1e489b4423e0e698266fa54762f0e
BLAKE2b-256 db5824ff353cc5208c4be2fa5ab8d309116b97ec311d350b7de19a9c26ee52a8

See more details on using hashes here.

Provenance

File details

Details for the file yolov5_onnx_cv-0.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for yolov5_onnx_cv-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 1cee2374650884a4466436d7f1205afaac0c8e402d87c0edaacaab6b835e8008
MD5 8042cf78a25bbca909bdb3e1baf47b21
BLAKE2b-256 59afe21dfc2c0ba58089bbd87067d224b9455fb43d0a53e1be65b1443c323383

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page