Packaged version of the Yolov5 object detector
Project description
packaged ultralytics/yolov5
pip install yolov5
Overview
You can finally install YOLOv5 object detector using pip and integrate into your project easily.
This yolov5 package contains everything from ultralytics/yolov5 at this commit plus:
1. Easy installation via pip: `pip install yolov5`
2. Full CLI integration with fire package
3. COCO dataset format support (for training)
4. S3 support (model and dataset upload)
5. NeptuneAI logger support (metric, model and dataset logging)
6. Classwise AP logging during experiments
Install
Install yolov5 using pip (for Python >=3.7)
pip install yolov5
Install yolov5 using pip `(for Python 3.6)`
pip install "numpy>=1.18.5,<1.20" "matplotlib>=3.2.2,<4"
pip install yolov5
Use from Python
Basic
import yolov5
# load model
model = yolov5.load('yolov5s')
# set model parameters
model.conf = 0.25 # NMS confidence threshold
model.iou = 0.45 # NMS IoU threshold
model.agnostic = False # NMS class-agnostic
model.multi_label = False # NMS multiple labels per box
model.max_det = 1000 # maximum number of detections per image
# set image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# perform inference
results = model(img)
# inference with larger input size
results = model(img, size=1280)
# inference with test time augmentation
results = model(img, augment=True)
# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]
# show detection bounding boxes on image
results.show()
# save results into "results/" folder
results.save(save_dir='results/')
Alternative
from yolov5 import YOLOv5
# set model params
model_path = "yolov5/weights/yolov5s.pt"
device = "cuda:0" # or "cpu"
# init yolov5 model
yolov5 = YOLOv5(model_path, device)
# load images
image1 = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
image2 = 'https://github.com/ultralytics/yolov5/blob/master/data/images/bus.jpg'
# perform inference
results = yolov5.predict(image1)
# perform inference with larger input size
results = yolov5.predict(image1, size=1280)
# perform inference with test time augmentation
results = yolov5.predict(image1, augment=True)
# perform inference on multiple images
results = yolov5.predict([image1, image2], size=1280, augment=True)
# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]
# show detection bounding boxes on image
results.show()
# save results into "results/" folder
results.save(save_dir='results/')
Train/Detect/Test/Export
- You can directly use these functions by importing them:
from yolov5 import train, val, detect, export
train.run(imgsz=640, data='coco128.yaml')
val.run(imgsz=640, data='coco128.yaml', weights='yolov5s.pt')
detect.run(imgsz=640)
export.run(imgsz=640, weights='yolov5s.pt')
- You can pass any argument as input:
from yolov5 import detect
img_url = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
detect.run(source=img_url, weights="yolov5s6.pt", conf_thres=0.25, imgsz=640)
Use from CLI
You can call yolov5 train
, yolov5 detect
, yolov5 val
and yolov5 export
commands after installing the package via pip
:
Training
- Finetune one of the pretrained YOLOv5 models using your custom
data.yaml
:
$ yolov5 train --data data.yaml --weights yolov5s.pt --batch-size 16 --img 640
yolov5m.pt 8
yolov5l.pt 4
yolov5x.pt 2
- Start a training using a COCO formatted dataset:
# data.yml
train_json_path: "train.json"
train_image_dir: "train_image_dir/"
val_json_path: "val.json"
val_image_dir: "val_image_dir/"
$ yolov5 train --data data.yaml --weights yolov5s.pt
- Visualize your experiments via Neptune.AI (neptune-client>=0.10.10 required):
$ yolov5 train --data data.yaml --weights yolov5s.pt --neptune_project NAMESPACE/PROJECT_NAME --neptune_token YOUR_NEPTUNE_TOKEN
- Automatically upload weights and datasets to AWS S3 (with Neptune.AI artifact tracking integration):
export AWS_ACCESS_KEY_ID=YOUR_KEY
export AWS_SECRET_ACCESS_KEY=YOUR_KEY
$ yolov5 train --data data.yaml --weights yolov5s.pt --s3_upload_dir YOUR_S3_FOLDER_DIRECTORY --upload_dataset
- Add
yolo_s3_data_dir
intodata.yaml
to match Neptune dataset with a present dataset in S3.
# data.yml
train_json_path: "train.json"
train_image_dir: "train_image_dir/"
val_json_path: "val.json"
val_image_dir: "val_image_dir/"
yolo_s3_data_dir: s3://bucket_name/data_dir/
Inference
yolov5 detect command runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect
.
$ yolov5 detect --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
rtmp://192.168.1.105/live/test # rtmp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
Export
You can export your fine-tuned YOLOv5 weights to any format such as torchscript
, onnx
, coreml
, pb
, tflite
, tfjs
:
$ yolov5 export --weights yolov5s.pt --include 'torchscript,onnx,coreml,pb,tfjs'
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
yolov5-thin-6.1.5.tar.gz
(754.6 kB
view details)
Built Distribution
File details
Details for the file yolov5-thin-6.1.5.tar.gz
.
File metadata
- Download URL: yolov5-thin-6.1.5.tar.gz
- Upload date:
- Size: 754.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cc86caa733229428afa6ba8fc9210d89ebd809edb82a4de545ffa1a840b1ecfa |
|
MD5 | 2b918e8a8ee04549875ba6906811f782 |
|
BLAKE2b-256 | 0cb6a4adad40c65f447c9d428b85f76f41901d7d24020a3fd86599db59a7e443 |
File details
Details for the file yolov5_thin-6.1.5-py36.py37.py38-none-any.whl
.
File metadata
- Download URL: yolov5_thin-6.1.5-py36.py37.py38-none-any.whl
- Upload date:
- Size: 810.6 kB
- Tags: Python 3.6, Python 3.7, Python 3.8
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0bd082b175fcc2f23c5cc450a6dc5a25b8c6057d01f53ff062dae05e92280c41 |
|
MD5 | 9b0d846a88ed4cf1a7faa6794003a7b3 |
|
BLAKE2b-256 | 1762856fcabb274db8c5d95bdd23da469b97211b3f4d73f334b7ba70843aeed2 |