Skip to main content

Packaged version of the Yolov5 object detector

Project description

Packaged YOLOv5 Object Detector

Downloads CI CPU testing Package CPU testing

You can finally install YOLOv5 object detector using pip and integrate into your project easily.

Overview

This package is up-to-date with the latest release of ultralytics/yolov5.

Installation

  • Install yolov5 using pip (for Python >=3.7):
pip install yolov5
  • Install yolov5 using pip (for Python 3.6):
pip install "numpy>=1.18.5,<1.20" "matplotlib>=3.2.2,<4"
pip install yolov5

Basic Usage

from PIL import Image
from yolov5 import YOLOv5

# set model params
model_path = "yolov5/weights/yolov5s.pt" # it automatically downloads yolov5s model to given path
device = "cuda" # or "cpu"

# init yolov5 model
yolov5 = YOLOv5(model_path, device)

# load images
image1 = Image.open("yolov5/data/images/bus.jpg")
image2 = Image.open("yolov5/data/images/zidane.jpg")

# perform inference
results = yolov5.predict(image1)

# perform inference with higher input size
results = yolov5.predict(image1, size=1280)

# perform inference with test time augmentation
results = yolov5.predict(image1, augment=True)

# perform inference on multiple images
results = yolov5.predict([image1, image2], size=1280, augment=True)

Tutorials

Scripts

You can download and use train.py, detect.py and test.py scripts after installing the package via pip:

Training

Run commands below to reproduce results on COCO dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest --batch-size your GPU allows (batch sizes shown for 16 GB devices).

$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                         yolov5m                                40
                                         yolov5l                                24
                                         yolov5x                                16

Inference

detect.py runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect.

$ python detect.py --source 0  # webcam
                            file.jpg  # image
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa  # rtsp stream
                            rtmp://192.168.1.105/live/test  # rtmp stream
                            http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8  # http stream

To run inference on example images in data/images:

$ python detect.py --source data/images --weights yolov5s.pt --conf 0.25

Status

Builds for the latest commit for Windows/Linux/MacOS with Python3.6/3.7/3.8: CI CPU testing

Status for the train/detect/test scripts: Package CPU testing

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yolov5-4.0.10.tar.gz (743.1 kB view details)

Uploaded Source

Built Distribution

yolov5-4.0.10-py36.py37.py38-none-any.whl (750.9 kB view details)

Uploaded Python 3.6Python 3.7Python 3.8

File details

Details for the file yolov5-4.0.10.tar.gz.

File metadata

  • Download URL: yolov5-4.0.10.tar.gz
  • Upload date:
  • Size: 743.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for yolov5-4.0.10.tar.gz
Algorithm Hash digest
SHA256 2a567016272ef2746da5b5ebc53630a9b2a8d884c23f0c86f5ab8f63e9106493
MD5 d20c2e9b9c6d42f414fbab368d28f440
BLAKE2b-256 5aeb6d6aefc21e139dae7bd914c54c9fa07766faf7ea79ddba735d475429a64c

See more details on using hashes here.

File details

Details for the file yolov5-4.0.10-py36.py37.py38-none-any.whl.

File metadata

  • Download URL: yolov5-4.0.10-py36.py37.py38-none-any.whl
  • Upload date:
  • Size: 750.9 kB
  • Tags: Python 3.6, Python 3.7, Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for yolov5-4.0.10-py36.py37.py38-none-any.whl
Algorithm Hash digest
SHA256 336edc51dab4942a9e70a3b5da49d7176a45d50dca6c52e020aa8b3579fe1264
MD5 295019c9da03def2c317efdf9f21b395
BLAKE2b-256 dcba3dda1fd100b64fed915ca946bc9c81f55744654f10c0787fb528d82b32c3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page