Skip to main content

Packaged version of the Yolov5 object detector

Project description

Packaged YOLOv5 Object Detector

PyPI version Downloads CI CPU testing Package CPU testing

You can finally install YOLOv5 object detector using pip and integrate into your project easily.

Overview

This package is up-to-date with the latest release of ultralytics/yolov5.

Installation

  • Install yolov5 using pip (for Python >=3.7):
pip install yolov5
  • Install yolov5 using pip (for Python 3.6):
pip install "numpy>=1.18.5,<1.20" "matplotlib>=3.2.2,<4"
pip install yolov5

Basic Usage

import yolov5

# model
model = yolov5.load('yolov5s')

# image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# inference
results = model(img)

# inference with larger input size
results = model(img, size=1280)

# inference with test time augmentation
results = model(img, augment=True)

# show results
results.show()

# save results
results.save(save_dir='results/')

Alternative Usage

from yolov5 import YOLOv5

# set model params
model_path = "yolov5/weights/yolov5s.pt" # it automatically downloads yolov5s model to given path
device = "cuda" # or "cpu"

# init yolov5 model
yolov5 = YOLOv5(model_path, device)

# load images
image1 = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
image2 = 'https://github.com/ultralytics/yolov5/blob/master/data/images/bus.jpg'

# perform inference
results = yolov5.predict(image1)

# perform inference with larger input size
results = yolov5.predict(image1, size=1280)

# perform inference with test time augmentation
results = yolov5.predict(image1, augment=True)

# perform inference on multiple images
results = yolov5.predict([image1, image2], size=1280, augment=True)

# show detection bounding boxes on image
results.show()

# save results into "results/" folder
results.save(save_dir='results/')

Scripts

You can call yolo_train, yolo_detect and yolo_test commands after installing the package via pip:

Training

Run commands below to reproduce results on COCO dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest --batch-size your GPU allows (batch sizes shown for 16 GB devices).

$ yolo_train --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                         yolov5m                                40
                                         yolov5l                                24
                                         yolov5x                                16

Inference

yolo_detect command runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect.

$ yolo_detect --source 0  # webcam
                            file.jpg  # image
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa  # rtsp stream
                            rtmp://192.168.1.105/live/test  # rtmp stream
                            http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8  # http stream

To run inference on example images in data/images:

$ yolo_detect --source data/images --weights yolov5s.pt --conf 0.25

Status

Builds for the latest commit for Windows/Linux/MacOS with Python3.6/3.7/3.8: CI CPU testing

Status for the train/detect/test scripts: Package CPU testing

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yolov5-5.0.0.tar.gz (760.9 kB view details)

Uploaded Source

Built Distribution

yolov5-5.0.0-py36.py37.py38-none-any.whl (780.3 kB view details)

Uploaded Python 3.6Python 3.7Python 3.8

File details

Details for the file yolov5-5.0.0.tar.gz.

File metadata

  • Download URL: yolov5-5.0.0.tar.gz
  • Upload date:
  • Size: 760.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for yolov5-5.0.0.tar.gz
Algorithm Hash digest
SHA256 8551411e81bae3a9a86d16f8fd15745d7c6285715b0876d5bcb4f951f221fdc4
MD5 32177ab958b37dad357cbcc8893a094d
BLAKE2b-256 d2b7401bb039b30dda443ffd7a0cdab715f99334fd74d35a284ab3400f40c188

See more details on using hashes here.

File details

Details for the file yolov5-5.0.0-py36.py37.py38-none-any.whl.

File metadata

  • Download URL: yolov5-5.0.0-py36.py37.py38-none-any.whl
  • Upload date:
  • Size: 780.3 kB
  • Tags: Python 3.6, Python 3.7, Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for yolov5-5.0.0-py36.py37.py38-none-any.whl
Algorithm Hash digest
SHA256 e935721670846d82f74fca87bbccb876da218683b877137fe20b22e18017f4c4
MD5 0070aed13710144becf3e21e609cf57f
BLAKE2b-256 0123d9b5b9f5d70776babd6f71325a1f6e46ef64f4b1b375e23b8f14e6099a2f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page