Skip to main content

Packaged version of the Yolov5 object detector

Project description

Packaged YOLOv5 Object Detector

PyPI version Downloads CI CPU testing Package CPU testing

You can finally install YOLOv5 object detector using pip and integrate into your project easily.

Overview

This package is up-to-date with the latest release of ultralytics/yolov5.

Installation

  • Install yolov5 using pip (for Python >=3.7):
pip install yolov5
  • Install yolov5 using pip (for Python 3.6):
pip install "numpy>=1.18.5,<1.20" "matplotlib>=3.2.2,<4"
pip install yolov5

Basic Usage

import yolov5

# model
model = yolov5.load('yolov5s')

# image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# inference
results = model(img)

# inference with larger input size
results = model(img, size=1280)

# inference with test time augmentation
results = model(img, augment=True)

# show results
results.show()

# save results
results.save(save_dir='results/')

Alternative Usage

from yolov5 import YOLOv5

# set model params
model_path = "yolov5/weights/yolov5s.pt" # it automatically downloads yolov5s model to given path
device = "cuda" # or "cpu"

# init yolov5 model
yolov5 = YOLOv5(model_path, device)

# load images
image1 = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
image2 = 'https://github.com/ultralytics/yolov5/blob/master/data/images/bus.jpg'

# perform inference
results = yolov5.predict(image1)

# perform inference with larger input size
results = yolov5.predict(image1, size=1280)

# perform inference with test time augmentation
results = yolov5.predict(image1, augment=True)

# perform inference on multiple images
results = yolov5.predict([image1, image2], size=1280, augment=True)

# show detection bounding boxes on image
results.show()

# save results into "results/" folder
results.save(save_dir='results/')

Scripts

You can call yolo_train, yolo_detect and yolo_test commands after installing the package via pip:

Training

Run commands below to reproduce results on COCO dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest --batch-size your GPU allows (batch sizes shown for 16 GB devices).

$ yolo_train --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                    yolov5m                                40
                                    yolov5l                                24
                                    yolov5x                                16

Inference

yolo_detect command runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect.

$ yolo_detect --source 0  # webcam
                       file.jpg  # image
                       file.mp4  # video
                       path/  # directory
                       path/*.jpg  # glob
                       rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa  # rtsp stream
                       rtmp://192.168.1.105/live/test  # rtmp stream
                       http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8  # http stream

To run inference on example images in yolov5/data/images:

$ yolo_detect --source yolov5/data/images --weights yolov5s.pt --conf 0.25

Status

Builds for the latest commit for Windows/Linux/MacOS with Python3.6/3.7/3.8: CI CPU testing

Status for the train/detect/test scripts: Package CPU testing

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yolov5-5.0.1.tar.gz (763.1 kB view details)

Uploaded Source

Built Distribution

yolov5-5.0.1-py36.py37.py38-none-any.whl (783.1 kB view details)

Uploaded Python 3.6Python 3.7Python 3.8

File details

Details for the file yolov5-5.0.1.tar.gz.

File metadata

  • Download URL: yolov5-5.0.1.tar.gz
  • Upload date:
  • Size: 763.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for yolov5-5.0.1.tar.gz
Algorithm Hash digest
SHA256 d913ac9cb146cf79af05f18994b9e617ea753407f37fe12f12ed65086c0a218b
MD5 8fbd83d25f9572b815daa56e982a67ed
BLAKE2b-256 c8a130afb3b0acc512ffae0718ae246e8aeb4faa4d992da02645cd5ad73804ac

See more details on using hashes here.

File details

Details for the file yolov5-5.0.1-py36.py37.py38-none-any.whl.

File metadata

  • Download URL: yolov5-5.0.1-py36.py37.py38-none-any.whl
  • Upload date:
  • Size: 783.1 kB
  • Tags: Python 3.6, Python 3.7, Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for yolov5-5.0.1-py36.py37.py38-none-any.whl
Algorithm Hash digest
SHA256 26316ce02c8fdda5acd2105a4d7cf7f36348f037e9a602c65b2c9ee27b43211d
MD5 f7737f4ccdeade2dacbec3c676817c29
BLAKE2b-256 e1ab9e13292eb9a1c79e49115918748563cd9176430e1f099a538ca542afece7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page