Skip to main content

Packaged version of the Yolov5 object detector

Project description

packaged ultralytics/yolov5

pip install yolov5

total downloads monthly downloads pypi version
ci testing package testing

Overview

You can finally install YOLOv5 object detector using pip and integrate into your project easily.

Install

Install yolov5 using pip (for Python >=3.7)
pip install yolov5
Install yolov5 using pip `(for Python 3.6)`
pip install "numpy>=1.18.5,<1.20" "matplotlib>=3.2.2,<4"
pip install yolov5

Use from Python

Basic
import yolov5

# load model
model = yolov5.load('yolov5s')

# set image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# perform inference
results = model(img)

# inference with larger input size
results = model(img, size=1280)

# inference with test time augmentation
results = model(img, augment=True)

# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]

# show detection bounding boxes on image
results.show()

# save results into "results/" folder
results.save(save_dir='results/')
Alternative
from yolov5 import YOLOv5

# set model params
model_path = "yolov5/weights/yolov5s.pt"
device = "cuda:0" # or "cpu"

# init yolov5 model
yolov5 = YOLOv5(model_path, device)

# load images
image1 = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
image2 = 'https://github.com/ultralytics/yolov5/blob/master/data/images/bus.jpg'

# perform inference
results = yolov5.predict(image1)

# perform inference with larger input size
results = yolov5.predict(image1, size=1280)

# perform inference with test time augmentation
results = yolov5.predict(image1, augment=True)

# perform inference on multiple images
results = yolov5.predict([image1, image2], size=1280, augment=True)

# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]

# show detection bounding boxes on image
results.show()

# save results into "results/" folder
results.save(save_dir='results/')
Train/Detect/Test/Export
  • You can directly use these functions by importing them:
from yolov5 import train, val, detect, export

train.run(imgsz=640, data='coco128.yaml')
val.run(imgsz=640, data='coco128.yaml', weights='yolov5s.pt')
detect.run(imgsz=640)
export.run(imgsz=640, weights='yolov5s.pt')
  • You can pass any argument as input:
from yolov5 import detect

img_url = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

detect.run(source=img_url, weights="yolov5s6.pt", conf_thres=0.25, imgsz=640)

Use from CLI

You can call yolov5 train, yolov5 detect, yolov5 val and yolov5 export commands after installing the package via pip:

Training
  • Finetune one of the pretrained YOLOv5 models using your custom data.yaml:
$ yolov5 train --data data.yaml --weights yolov5s.pt --batch-size 16 --img 640
                                          yolov5m.pt              8
                                          yolov5l.pt              4
                                          yolov5x.pt              2
  • Start a training using a COCO formatted dataset:
# data.yml
train_json_path: "train.json"
train_image_dir: "train_image_dir/"
val_json_path: "val.json"
val_image_dir: "val_image_dir/"
$ yolov5 train --data data.yaml --weights yolov5s.pt
  • Visualize your experiments via Neptune.AI (neptune-client>=0.10.10 required):
$ yolov5 train --data data.yaml --weights yolov5s.pt --neptune_project NAMESPACE/PROJECT_NAME --neptune_token YOUR_NEPTUNE_TOKEN
  • Automatically upload weights and datasets to AWS S3 (with Neptune.AI artifact tracking integration):
export AWS_ACCESS_KEY_ID=YOUR_KEY
export AWS_SECRET_ACCESS_KEY=YOUR_KEY
$ yolov5 train --data data.yaml --weights yolov5s.pt --s3_upload_dir YOUR_S3_FOLDER_DIRECTORY --upload_dataset
  • Add yolo_s3_data_dir into data.yaml to match Neptune dataset with a present dataset in S3.
# data.yml
train_json_path: "train.json"
train_image_dir: "train_image_dir/"
val_json_path: "val.json"
val_image_dir: "val_image_dir/"
yolo_s3_data_dir: s3://bucket_name/data_dir/
Inference

yolov5 detect command runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect.

$ yolov5 detect --source 0  # webcam
                         file.jpg  # image
                         file.mp4  # video
                         path/  # directory
                         path/*.jpg  # glob
                         rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa  # rtsp stream
                         rtmp://192.168.1.105/live/test  # rtmp stream
                         http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8  # http stream
Export

You can export your fine-tuned YOLOv5 weights to any format such as torchscript, onnx, coreml, pb, tflite, tfjs:

$ yolov5 export --weights yolov5s.pt --include 'torchscript,onnx,coreml,pb,tfjs'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yolov5-6.0.7.tar.gz (802.2 kB view details)

Uploaded Source

Built Distribution

yolov5-6.0.7-py36.py37.py38-none-any.whl (837.7 kB view details)

Uploaded Python 3.6Python 3.7Python 3.8

File details

Details for the file yolov5-6.0.7.tar.gz.

File metadata

  • Download URL: yolov5-6.0.7.tar.gz
  • Upload date:
  • Size: 802.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for yolov5-6.0.7.tar.gz
Algorithm Hash digest
SHA256 48c66521e5630da0375edd5aa7dc157823fe8ce5b18a30bb057d750286f40c8b
MD5 50f55fbd30d4f880bca546fab88814e4
BLAKE2b-256 031c53909790fb43b0485728447d6d3ec30bcddbe45fef137d8507876ac47f12

See more details on using hashes here.

File details

Details for the file yolov5-6.0.7-py36.py37.py38-none-any.whl.

File metadata

  • Download URL: yolov5-6.0.7-py36.py37.py38-none-any.whl
  • Upload date:
  • Size: 837.7 kB
  • Tags: Python 3.6, Python 3.7, Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for yolov5-6.0.7-py36.py37.py38-none-any.whl
Algorithm Hash digest
SHA256 11976935c876157f1a617447b7acf5cee1a93b36a844244194ea12c56c698a71
MD5 01e1d936d3f131bdeca18cafc1b630b1
BLAKE2b-256 8fa6274aa0480982d2c3ebe13cd1bda02939ed8d39dd7a0bb2f14c1af5e32a63

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page