Skip to main content

Packaged version of the Yolov5 object detector

Project description

packaged ultralytics/yolov5

pip install yolov5

total downloads monthly downloads fcakyon twitter
pypi version ci testing package testing

Overview

You can finally install YOLOv5 object detector using pip and integrate into your project easily.

This yolov5 package contains everything from ultralytics/yolov5 at this commit plus:
1. Easy installation via pip: pip install yolov5
2. Full CLI integration with fire package
3. COCO dataset format support (for training)
4. Full 🤗 Hub integration
5. S3 support (model and dataset upload)
6. NeptuneAI logger support (metric, model and dataset logging)
7. Classwise AP logging during experiments

Install

Install yolov5 using pip (for Python >=3.7)

pip install yolov5

Model Zoo

Effortlessly explore and use finetuned YOLOv5 models with one line of code: awesome-yolov5-models

Use from Python

import yolov5

# load pretrained model
model = yolov5.load('yolov5s.pt')

# or load custom model
model = yolov5.load('train/best.pt')
  
# set model parameters
model.conf = 0.25  # NMS confidence threshold
model.iou = 0.45  # NMS IoU threshold
model.agnostic = False  # NMS class-agnostic
model.multi_label = False  # NMS multiple labels per box
model.max_det = 1000  # maximum number of detections per image

# set image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# perform inference
results = model(img)

# inference with larger input size
results = model(img, size=1280)

# inference with test time augmentation
results = model(img, augment=True)

# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]

# show detection bounding boxes on image
results.show()

# save results into "results/" folder
results.save(save_dir='results/')
Train/Detect/Test/Export
  • You can directly use these functions by importing them:
from yolov5 import train, val, detect, export
# from yolov5.classify import train, val, predict
# from yolov5.segment import train, val, predict

train.run(imgsz=640, data='coco128.yaml')
val.run(imgsz=640, data='coco128.yaml', weights='yolov5s.pt')
detect.run(imgsz=640)
export.run(imgsz=640, weights='yolov5s.pt')
  • You can pass any argument as input:
from yolov5 import detect

img_url = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

detect.run(source=img_url, weights="yolov5s6.pt", conf_thres=0.25, imgsz=640)

Use from CLI

You can call yolov5 train, yolov5 detect, yolov5 val and yolov5 export commands after installing the package via pip:

Training
  • Finetune one of the pretrained YOLOv5 models using your custom data.yaml:
$ yolov5 train --data data.yaml --weights yolov5s.pt --batch-size 16 --img 640
                                          yolov5m.pt              8
                                          yolov5l.pt              4
                                          yolov5x.pt              2
  • Start a training using a COCO formatted dataset:
# data.yml
train_json_path: "train.json"
train_image_dir: "train_image_dir/"
val_json_path: "val.json"
val_image_dir: "val_image_dir/"
$ yolov5 train --data data.yaml --weights yolov5s.pt
  • Visualize your experiments via Neptune.AI (neptune-client>=0.10.10 required):
$ yolov5 train --data data.yaml --weights yolov5s.pt --neptune_project NAMESPACE/PROJECT_NAME --neptune_token YOUR_NEPTUNE_TOKEN
$ yolov5 train --data data.yaml --weights yolov5s.pt --hf_model_id username/modelname --hf_token YOUR-HF-WRITE-TOKEN
  • Automatically upload weights and datasets to AWS S3 (with Neptune.AI artifact tracking integration):
export AWS_ACCESS_KEY_ID=YOUR_KEY
export AWS_SECRET_ACCESS_KEY=YOUR_KEY
$ yolov5 train --data data.yaml --weights yolov5s.pt --s3_upload_dir YOUR_S3_FOLDER_DIRECTORY --upload_dataset
  • Add yolo_s3_data_dir into data.yaml to match Neptune dataset with a present dataset in S3.
# data.yml
train_json_path: "train.json"
train_image_dir: "train_image_dir/"
val_json_path: "val.json"
val_image_dir: "val_image_dir/"
yolo_s3_data_dir: s3://bucket_name/data_dir/
Inference

yolov5 detect command runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect.

$ yolov5 detect --source 0  # webcam
                         file.jpg  # image
                         file.mp4  # video
                         path/  # directory
                         path/*.jpg  # glob
                         rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa  # rtsp stream
                         rtmp://192.168.1.105/live/test  # rtmp stream
                         http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8  # http stream
Export

You can export your fine-tuned YOLOv5 weights to any format such as torchscript, onnx, coreml, pb, tflite, tfjs:

$ yolov5 export --weights yolov5s.pt --include torchscript,onnx,coreml,pb,tfjs
Classify

Train/Val/Predict with YOLOv5 image classifier:

$ yolov5 classify train --img 640 --data mnist2560 --weights yolov5s-cls.pt --epochs 1
$ yolov5 classify predict --img 640 --weights yolov5s-cls.pt --source images/
Segment

Train/Val/Predict with YOLOv5 instance segmentation model:

$ yolov5 segment train --img 640 --weights yolov5s-seg.pt --epochs 1
$ yolov5 segment predict --img 640 --weights yolov5s-seg.pt --source images/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yolov5-7.0.7.tar.gz (900.4 kB view details)

Uploaded Source

Built Distribution

yolov5-7.0.7-py37.py38.py39.py310-none-any.whl (953.3 kB view details)

Uploaded Python 3.10Python 3.7Python 3.8Python 3.9

File details

Details for the file yolov5-7.0.7.tar.gz.

File metadata

  • Download URL: yolov5-7.0.7.tar.gz
  • Upload date:
  • Size: 900.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for yolov5-7.0.7.tar.gz
Algorithm Hash digest
SHA256 ebb2d12356654d0a9c0479071f16f8af6da2816c3a53cbf76b1ea8ad2764e4d4
MD5 afd0cb5c51684ec1bb7199bb88707f4d
BLAKE2b-256 47295a97517a277eaf8906324ad49efc686198a727b4593a8bb72668640f4e01

See more details on using hashes here.

File details

Details for the file yolov5-7.0.7-py37.py38.py39.py310-none-any.whl.

File metadata

  • Download URL: yolov5-7.0.7-py37.py38.py39.py310-none-any.whl
  • Upload date:
  • Size: 953.3 kB
  • Tags: Python 3.10, Python 3.7, Python 3.8, Python 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for yolov5-7.0.7-py37.py38.py39.py310-none-any.whl
Algorithm Hash digest
SHA256 56b620c417dee87e61154194abb59e4b2632b98455a04e035e4c4c2e55e7ebee
MD5 2b2a5b9ca67c1e5400571d3d37aadf4c
BLAKE2b-256 2e571af2d1528f3d9e1cd6a547a8fd35c9b0c714184afc714045cd7b27c0e2c9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page