YoloV8 Package Tools
Project description
YOLOV8 ONNX
Description
This package is compatible with YoloV8 for object detection program, using ONNX format model (CPU & GPU speed can be x2 Times Faster). This code is referenced from this awesome repo.
Usage
Step 1: Convert your pre-trained model to ONNX format.
from ultralytics import YOLO
# Load your pre-trained model
model = YOLO('your-trained-model.pt')
# Export the model
model.export(format='onnx',
batch=1,
device='cpu',
simplify=True,
imgsz=640,
dynamic=True)
Step 2: Use in your code.
from yolov8_onnx import DetectEngine
engine = DetectEngine(model_path= str | 'your-model.onnx',
image_size = int | 640,
conf_thres= float | 0.5,
iou_thres= float | 0.1)
output = engine(image) # cv2 image
Note: akaOCR (Transform documents into useful data with AI-based IDP - Intelligent Document Processing) - helps make inefficient manual entry a thing of the past—and reliable data insights a thing of the present. Details at: https://app.akaocr.io
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
yolov8_onnx-1.0.4.tar.gz
(9.0 kB
view hashes)
Built Distribution
Close
Hashes for yolov8_onnx-1.0.4-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ca51deddcf5abcc544e93a83764c4da23bae371ec2265981458a674ade5f8012 |
|
MD5 | 3035c03e9e70575021184a281554a295 |
|
BLAKE2b-256 | 3fdc7fdc4221399d8d18cce4a3df666669a424592be3c25173b7f6b225244142 |