Skip to main content

yolov9pip

Project description

Yolov9-Pip: Packaged version of the Yolov9 repository

Package version Supported Python versions Project Status pre-commit.ci

This repo is a packaged version of the Yolov9 model.

⭐ Installation

pip install yolov9pip

🌠 Yolov9 Inference

import yolov9

# load pretrained or custom model
model = yolov9.load(
    "yolov9-c.pt",
    device="cpu",
)

# set model parameters
model.conf = 0.25  # NMS confidence threshold
model.iou = 0.45  # NMS IoU threshold
model.classes = None  # (optional list) filter by class

# set image
imgs = "data/zidane.jpg"

# perform inference
results = model(imgs)

# inference with larger input size and test time augmentation
results = model(img, size=640)

# parse results
predictions = results.pred[0]
boxes = predictions[:, :4]  # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]

# show detection bounding boxes on image
results.show()

😍 Contributing

pip install -r dev-requirements.txt
pre-commit install
pre-commit run --all-files

🤗 Citation

@article{wang2024yolov9,
  title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information},
  author={Wang, Chien-Yao  and Liao, Hong-Yuan Mark},
  booktitle={arXiv preprint arXiv:2402.13616},
  year={2024}
}

Acknowledgement

A part of the code is borrowed from Yolov5-pip. Many thanks for their wonderful works.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yolov9pip-0.0.3.tar.gz (222.8 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page