It is a demo application of the YOLOX model.
Project description
Yolox-Pip: This is a packaged version of the YOLOX for easy installation and use.
Overview
This repo is a packaged version of the YOLOX for easy installation and use.
Installation
pip install yoloxdetect
Yolox Inference
from yoloxdetect import YoloxDetector
model = YoloxDetector(
model_path = "kadirnar/yolox_s-v0.1.1", # or "data/weights/yolox_s.pth"
config_path = "configs.yolox_s",
device = "cuda:0",
hf_model=True,
)
model.classes = None
model.conf = 0.25
model.iou = 0.45
model.show = False
model.save = True
pred = model.predict(image='data/images', img_size=640)
Citation
@article{yolox2021,
title={YOLOX: Exceeding YOLO Series in 2021},
author={Ge, Zheng and Liu, Songtao and Wang, Feng and Li, Zeming and Sun, Jian},
journal={arXiv preprint arXiv:2107.08430},
year={2021}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
yoloxdetect-0.0.10.tar.gz
(7.8 kB
view details)
File details
Details for the file yoloxdetect-0.0.10.tar.gz
.
File metadata
- Download URL: yoloxdetect-0.0.10.tar.gz
- Upload date:
- Size: 7.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 125d628d7ac59aba2118dd27a11e4fa3582be7c83e8372ab7a73da2dc035caba |
|
MD5 | b5bd354ef3ce79bac1e797cef9948143 |
|
BLAKE2b-256 | f035faca929ca3f3575d52340d43f6b9f480a2fe5ac4134041206102b5cae317 |