The open-source yshs library.
Project description
Here is the open library of Yuan Shang Han Shan (YSHS) co. ltd.
Install
pip install yshs
Usage
List Models
列出所有可用的模型
import os, sys
import yshs
yshs.api_key = os.getenv('YSHS_API_KEY')
response = yshs.Models.list(refresh=True, return_all_info=True)
print(response)
Request AI Model
import os, sys
import yshs
yshs.api_key = os.getenv('YSHS_API_KEY')
def request_model():
responese = yshs.LLM.chat(
model="openai/gpt-3.5-turbo", # 选择模型
messages=[
{"role": "system", "content": "You are a helpful assistant."}, # 系统提示
{"role": "user", "content": "Who won the world series in 2020?"}, # 第一个问题
# {"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."}, # 第一个的答案
# {"role": "user", "content": "Where was it played?"} # 第二个问题
]
)
full_response = ""
for x in responese:
sys.stdout.write(x) # 逐token输出
sys.stdout.flush()
full_response += x
print()
return full_response
answer = request_model()
# print(answer)
Continuous Conversation
Create thread to continue the conversation automatically.
from yshs import Client
client = Client() # 注;一个Client可包含多个ChatThead, 一个ChatThead对应一个Conversation(根据chat_id区分),一个Conversation有多个轮次(turns)
prompt = "hello" # user prompt
for chunk in client.send_prompt(prompt, chat_id=None): # send_prompt()时自动创建ChatThead
print(chunk['response'], end='', flush=True)
print()
chat_id = chunk['chat_id']
print(f'chat_id: {chat_id}')
prompt = 'who are you?'
for chunk in client.send_prompt(prompt, chat_id=chat_id): # send_prompt()时自动匹配ChatThead,若不存在则创建
print(chunk['response'], end='', flush=True)
print()
print(f'chat_id: {chat_id}')
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
yshs-1.0.3.tar.gz
(8.0 kB
view hashes)