Skip to main content

An analysis and visualization toolkit for Astrophysical simulations.

Project description

Hi there! You’ve just downloaded yt, an analysis tool for scientific datasets, generated on a variety of data platforms. It’s written in python and heavily leverages NumPy, Matplotlib, SymPy and Cython for a variety of tasks.

Full documentation and a user community can be found at:

http://yt-project.org/

http://yt-project.org/doc/

If you have used Python before, and are comfortable with installing packages, you should find the setup.py script fairly straightforward: simply execute “python setup.py install”.

If you would rather a more automated installation, you can use the script doc/install_script.sh . You will have to set the destination directory, and there are options available, but it should be straightforward.

For more information on installation, what to do if you run into problems, or ways to help development, please visit our website.

Enjoy!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yt-3.2.2.tar.gz (7.4 MB view details)

Uploaded Source

Built Distributions

yt-3.2.2.post1-cp34-none-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.4 Windows x86-64

yt-3.2.2.post1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.4m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

yt-3.2.2.post1-cp27-none-win_amd64.whl (8.1 MB view details)

Uploaded CPython 2.7 Windows x86-64

yt-3.2.2.post1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.3 MB view details)

Uploaded CPython 2.7 macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

yt-3.2.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.5m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

File details

Details for the file yt-3.2.2.tar.gz.

File metadata

  • Download URL: yt-3.2.2.tar.gz
  • Upload date:
  • Size: 7.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for yt-3.2.2.tar.gz
Algorithm Hash digest
SHA256 78866f51e4751534ad60987000f149a8295952b99b37ca249d45e4d11095a5df
MD5 a82520115664f7b28bda50ba0d831d16
BLAKE2b-256 37f9a7ef11c4d4dae512b3766d75febe100707e45dc0e453926c1134543ee3a3

See more details on using hashes here.

File details

Details for the file yt-3.2.2.post1-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for yt-3.2.2.post1-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 ef8bf991b1b20e083d180167b11aa80d99d0a793643af43dc2c50e32d3aa33b1
MD5 f117810fc242dfcbc3569b77f07519b5
BLAKE2b-256 93d29df9c2760f23a23cd2ea3d8610e4fa2f95f94349ee826fd6efbec18cc5f8

See more details on using hashes here.

File details

Details for the file yt-3.2.2.post1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.2.2.post1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 7bf0dcbb637929cf3c18ec076ff711099b526d117cfffe01c15c8298e561759b
MD5 2e2874c092314c954ac063e9b15826d8
BLAKE2b-256 482c916b553a301b14f09c1569463b1016e8b4dd14c422ffab31a1d3fd5c36fb

See more details on using hashes here.

File details

Details for the file yt-3.2.2.post1-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for yt-3.2.2.post1-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 6395646ad1e6c0aef2ac4a39346b7ebd7b176d15d98afe290946cf72fe834549
MD5 08381f9c91d74435e59aa7ab5fe43d8d
BLAKE2b-256 005deeaaf51919473e08e36f43105506299038d2593fa890b361d5a23b62a803

See more details on using hashes here.

File details

Details for the file yt-3.2.2.post1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.2.2.post1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 9cf87d308eb34bf9e9e816976a3db1e5867aa0e1ae07c7a45fed4094eb701a52
MD5 cee20fd2219b4b65e387c5b9321c56f4
BLAKE2b-256 0e13ff09c05464a58927dd6804034b9672c5c02af6e288fb485bd4f9b0b3b028

See more details on using hashes here.

File details

Details for the file yt-3.2.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.2.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8119d3306afff5c2c9d60e914bcdb8857ce9190d8100b21da4381101a59faede
MD5 df0c442d978e33843df84ea80a2686f1
BLAKE2b-256 c7eeb6f1d53f0374985f5ebc1647da01691f08b3969edbc59305a727105b94ec

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page