Skip to main content

An analysis and visualization toolkit for Astrophysical simulations.

Project description

Hi there! You’ve just downloaded yt, an analysis tool for scientific datasets, generated on a variety of data platforms. It’s written in python and heavily leverages NumPy, Matplotlib, SymPy and Cython for a variety of tasks.

Full documentation and a user community can be found at:

http://yt-project.org/

http://yt-project.org/doc/

If you have used Python before, and are comfortable with installing packages, you should find the setup.py script fairly straightforward: simply execute “python setup.py install”.

If you would rather a more automated installation, you can use the script doc/install_script.sh . You will have to set the destination directory, and there are options available, but it should be straightforward.

For more information on installation, what to do if you run into problems, or ways to help development, please visit our website.

Enjoy!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yt-3.2.3.tar.gz (8.6 MB view details)

Uploaded Source

Built Distributions

yt-3.2.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.5m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

yt-3.2.3-cp34-none-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.4 Windows x86-64

yt-3.2.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.4m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

yt-3.2.3-cp27-none-win_amd64.whl (8.1 MB view details)

Uploaded CPython 2.7 Windows x86-64

yt-3.2.3-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (5.3 MB view details)

Uploaded CPython 2.7 macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

File details

Details for the file yt-3.2.3.tar.gz.

File metadata

  • Download URL: yt-3.2.3.tar.gz
  • Upload date:
  • Size: 8.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for yt-3.2.3.tar.gz
Algorithm Hash digest
SHA256 4d6ccf345d9fab965335c9faf8708c7eea79366b81d77f0f302808be3e82c0ed
MD5 b81757057ae08360afc6ca2e74e1a3a8
BLAKE2b-256 de14f28f19ffef74ee92647181ab28dc5d0b0c34d1b9ca4a1c79c98abd43cecf

See more details on using hashes here.

File details

Details for the file yt-3.2.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.2.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8d8d6457cf084cff31673b92d2356ec17760220f34f77912483026d11663e1d5
MD5 dd98407971621fcac271870157d7249d
BLAKE2b-256 eb148fa196f8bba6f3a3883997cf0492913c6749f4981be0ed05e7aac78b2271

See more details on using hashes here.

File details

Details for the file yt-3.2.3-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for yt-3.2.3-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 d05896d1faf50c0b020ed601cb1a9df52092dc4afa6f8582e854afb5faef6034
MD5 bb4cca7f98fd27cc8ce91929a412bab5
BLAKE2b-256 0e54191e6268b7be20a7d77e8d49f258cfbab6d2bfc63747204d9a0af8c4d0aa

See more details on using hashes here.

File details

Details for the file yt-3.2.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.2.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e06b12cb0613e1c9073494eb6e892962ac3098fca772e9e9491ded2ebb1216ca
MD5 6f1925d49e454c7a6bf4adb50ac88a96
BLAKE2b-256 ee01fbae09a8d329c7607f63da9dfc286fe80d0867a74a4bdc51f8be55485dec

See more details on using hashes here.

File details

Details for the file yt-3.2.3-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for yt-3.2.3-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 ef3661c3d7b7632e189b2b80ec19bd82fa5581cd85764a7688c74a4a8246d93d
MD5 a19a447e889a22d8c768180ee42e6cf9
BLAKE2b-256 20cefabbf91d42f414acc1e1a1c17b515f579567142c405698f5f654873b8a35

See more details on using hashes here.

File details

Details for the file yt-3.2.3-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for yt-3.2.3-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 dabe87062909546becd464784727f071162a99253c6cabd35f9f2591a96b629a
MD5 487b8e636363b6707ccd93f3c5fc7122
BLAKE2b-256 a3b91569251102f5ad9e9a3eddccaed53e373240dbeeabfa72bba1fee312abb5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page