Skip to main content

Transcribe any YouTube video into a structural Markdown document

Project description

yt2doc

Header Image

yt2doc transcribes videos & audios online into readable Markdown documents.

Supported video/audio sources:

  • YouTube
  • Apple Podcast
  • Twitter

yt2doc is meant to work fully locally, without invoking any external API. The OpenAI SDK dependency is required solely to interact with a local LLM server such as Ollama.

Check out some examples generated by yt2doc.

Why

There have been many existing projects that transcribe YouTube videos with Whisper and its variants, but most of them aimed to generate subtitles, while I had not found one that priortises readability. Whisper does not generate line break in its transcription, so transcribing a 20 mins long video without any post processing would give you a huge piece of text, without any line break or topic segmentation. This project aims to transcribe videos with that post processing.

Installation

Prerequisites

ffmepg is required to run yt2doc.

If you are running MacOS:

brew install ffmpeg

If you are on Debian/Ubuntu:

sudo apt install ffmpeg

Install yt2doc

Install with pipx:

pipx install yt2doc

Or install with uv:

uv tool install yt2doc

Upgrade

If you have already installed yt2doc but would like to upgrade to a later version:

pipx upgrade yt2doc

or with uv:

uv tool upgrade yt2doc

Usage

Get helping information:

yt2doc --help

Transcribe Video from Youtube or Twitter

To transcribe a video (on YouTube or Twitter) into a document:

yt2doc --video <video-url>

To save your transcription:

yt2doc --video <video-url> -o some_dir/transcription.md

Transcribe a YouTube playlist

To transcribe all videos from a YouTube playlist:

yt2doc --playlist <playlist-url> -o some_dir

Chapter unchaptered videos

(LLM server e.g. Ollama required) If the video is not chaptered, you can chapter it and add headings to each chapter:

yt2doc --video <video-url> --segment-unchaptered --llm-model <model-name>

Among smaller size models, gemma2:9b, llama3.1:8b, and qwen 2.5:7b work reasonably well.

By default, yt2doc talks to Ollama at http://localhost:11434/v1 to segment the text by topic. You can run yt2doc to interact with Ollama at a different address or port, a different (OpenAI-compatible) LLM server (e.g. vLLM, mistral.rs), or even OpenAI itself, by

yt2doc --video <video-url> --segment-unchaptered --llm-server <llm-server-url> --llm-api-key <llm-server-api-key> --llm-model <model-name>

Transcribe Apple Podcast

To transcribe a podcast episode on Apple Podcast:

yt2doc --audio <apple-podcast-episode-url> --segment-unchaptered --llm-model <model-name>

Whisper configuration

By default, yt2doc uses faster-whisper as transcription backend. You can run yt2doc with different faster-whisper configs (model size, device, compute type etc):

yt2doc --video <video-url> --whisper-model <model-name> --whisper-device <cpu|cuda|auto> --whisper-compute-type <compute_type>

For the meaning and choices of --whisper-model, --whisper-device and --whisper-compute-type, please refer to this comment of faster-whisper.

If you are running yt2doc on Apple Silicon, whisper.cpp gives much faster performance as it supports the Apple GPU. (A hacky) Support for whisper.cpp has been implemented:

yt2doc --video --whisper-backend whisper_cpp --whisper-cpp-executable <path-to-whisper-cpp-executable>  --whisper-cpp-model <path-to-whisper-cpp-model>

See https://github.com/shun-liang/yt2doc/issues/15 for more info on whisper.cpp integration.

Text segmentation configuration

yt2doc uses Segment Any Text (SaT) to segment the transcript into sentences and paragraphs. You can change the SaT model:

yt2doc --video <video-url> --sat-model <sat-model>

List of available SaT models here.

Run in Docker

To run yt2doc in Docker, first pull the image from ghcr:

docker pull ghcr.io/shun-liang/yt2doc

Then just run:

docker run ghcr.io/shun-liang/yt2doc --video <video-url>

If you are running Ollama (or any LLM server) locally and you want to segment the unchapter video/audio, you need to use the host network driver. Also, if you want to save the document to the host filesystem, you need mount a host directory to the Docker container. For example, if you run Ollam at http://localhost:11434 on host, and you want yt2doc to write to <directory-on-host> on the host filesystem, then

docker run --network="host" --mount type=bind,source=<directory-on-host>,target=/app  ghcr.io/shun-liang/yt2doc --video <video-url> --segment-unchaptered --llm-server http://host.docker.internal:11434/v1 --llm-model <llm-model> -o .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yt2doc-0.2.7.tar.gz (3.5 MB view details)

Uploaded Source

Built Distribution

yt2doc-0.2.7-py3-none-any.whl (21.9 kB view details)

Uploaded Python 3

File details

Details for the file yt2doc-0.2.7.tar.gz.

File metadata

  • Download URL: yt2doc-0.2.7.tar.gz
  • Upload date:
  • Size: 3.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for yt2doc-0.2.7.tar.gz
Algorithm Hash digest
SHA256 abff919415a748fa83e23af473c2bed8f7196e2d4e370d9a1b581ce75082d079
MD5 72bf7744f239a2948eacf939ae55c24f
BLAKE2b-256 8d4801c3aeab040e34e7866143394c1ff2f0368ae519314d6153f851e6dbd1b9

See more details on using hashes here.

File details

Details for the file yt2doc-0.2.7-py3-none-any.whl.

File metadata

  • Download URL: yt2doc-0.2.7-py3-none-any.whl
  • Upload date:
  • Size: 21.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for yt2doc-0.2.7-py3-none-any.whl
Algorithm Hash digest
SHA256 7dc416839e3810c6a93d54a0a7c1e805d05207beea357363627cd1b90002bcf6
MD5 cef217b7160dec80b41ad600fecdbf72
BLAKE2b-256 191f803fb5b48ff9c4e824a11c0250636a74e53bf6f3b73ba40ed14d91803fb8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page