No project description provided
Project description
Zarrita
Zarrita is an experimental implementation of Zarr v3 including sharding. This is only a technical proof of concept meant for generating sample datasets. Not recommended for production use.
Setup
import zarrita
import numpy as np
store = zarrita.LocalStore('testoutput') # or zarrita.RemoteStore('s3://bucket/test')
Create an array
a = zarrita.Array.create(
store / 'array',
shape=(6, 10),
dtype='int32',
chunk_shape=(2, 5),
codecs=[
zarrita.codecs.endian_codec(),
zarrita.codecs.blosc_codec(typesize=4),
],
attributes={'question': 'life', 'answer': 42}
)
a[:, :] = np.ones((6, 10), dtype='int32')
Open an array
a = zarrita.Array.open(store / 'array')
assert np.array_equal(a[:, :], np.ones((6, 10), dtype='int32'))
Create an array with sharding
a = zarrita.Array.create(
store / 'sharding',
shape=(16, 16),
dtype='int32',
chunk_shape=(16, 16),
chunk_key_encoding=('v2', '.'),
codecs=[
zarrita.codecs.sharding_codec(
chunk_shape=(8, 8),
codecs=[
zarrita.codecs.endian_codec(),
zarrita.codecs.blosc_codec(typesize=4),
]
),
],
)
data = np.arange(0, 16 * 16, dtype='int32').reshape((16, 16))
a[:, :] = data
assert np.array_equal(a[:, :], data)
Create a group
g = zarrita.Group.create(store / 'group')
g2 = g.create_group('group2')
a = g2.create_array(
'array',
shape=(16, 16),
dtype='int32',
chunk_shape=(16, 16),
)
a[:, :] = np.arange(0, 16 * 16, dtype='int32').reshape((16, 16))
Open a group
g = zarrita.Group.open(store / 'group')
g2 = g['group2']
a = g['group2']['array']
assert np.array_equal(a[:, :], np.arange(0, 16 * 16, dtype='int32').reshape((16, 16)))
Resize array
a.resize((10, 10))
Update attributes
a.update_attributes({'question': 'life', 'answer': 0})
Zarr v2
a = zarrita.ArrayV2.create(
store / 'array',
shape=(6, 10),
dtype='int32',
chunks=(2, 5),
)
a[:, :] = np.ones((6, 10), dtype='int32')
a3 = a.convert_to_v3()
assert a3.metadata.shape == a.shape
Async methods
a = await zarrita.Array.create_async(
store / 'array_async',
shape=(6, 10),
dtype='int32',
chunk_shape=(2, 5),
)
await a.async_[:, :].set(np.ones((6, 10), dtype='int32'))
await a.async_[:, :].get()
Credits
This is a largely-rewritten fork of zarrita
by @alimanfoo. It implements the Zarr v3 draft specification created by @alimanfoo, @jstriebel, @jbms et al.
Licensed under MIT
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
zarrita-0.1.0a16.tar.gz
(23.4 kB
view hashes)
Built Distribution
zarrita-0.1.0a16-py3-none-any.whl
(29.2 kB
view hashes)
Close
Hashes for zarrita-0.1.0a16-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5ae189cfbf284c885c7c90f98894b828d64b0b36a8528e59b9a00070a6e501bf |
|
MD5 | 7b77925182e63529f553d58b80c1dcc2 |
|
BLAKE2b-256 | b73a17f76b5d0e54d08a71a8121a5193cc053d8c7a48c4b2bdf294abdf1a5667 |