Skip to main content

Object Classification Training/Inferring Framework

Project description

Language: 🇺🇸 🇨🇳

«ZCls» is a classification model training/inferring framework

Documentation Status

Supported Recognizers:

Refer to roadmap for details

Table of Contents

Background

In the fields of object detection/object segmentation/action recognition, there have been many training frameworks with high integration and perfect process, such as facebookresearch/detectron2, open-mmlab/mmaction2 ...

Object classification is the most developed and theoretically basic field in deeplearning. Referring to the existing training framework, a training/inferring framework based on object classification model is implemented. I hope ZCls can bring you a better realization.

Installation

See INSTALL

Usage

How to train, see Get Started with ZCls

Use builtin datasets, see Use Builtin Datasets

Use custom datasets, see Use Custom Datasets

Use pretrained model, see Use Pretrained Model

Maintainers

  • zhujian - Initial work - zjykzj

Thanks

@misc{ding2021diverse,
      title={Diverse Branch Block: Building a Convolution as an Inception-like Unit}, 
      author={Xiaohan Ding and Xiangyu Zhang and Jungong Han and Guiguang Ding},
      year={2021},
      eprint={2103.13425},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{ding2021repvgg,
      title={RepVGG: Making VGG-style ConvNets Great Again}, 
      author={Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun},
      year={2021},
      eprint={2101.03697},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{fan2020pyslowfast,
  author =       {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and
                  Christoph Feichtenhofer},
  title =        {PySlowFast},
  howpublished = {\url{https://github.com/facebookresearch/slowfast}},
  year =         {2020}
}

@misc{zhang2020resnest,
      title={ResNeSt: Split-Attention Networks}, 
      author={Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola},
      year={2020},
      eprint={2004.08955},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{han2020ghostnet,
      title={GhostNet: More Features from Cheap Operations}, 
      author={Kai Han and Yunhe Wang and Qi Tian and Jianyuan Guo and Chunjing Xu and Chang Xu},
      year={2020},
      eprint={1911.11907},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

For more thanks, check THANKS

Contributing

Anyone's participation is welcome! Open an issue or submit PRs.

Small note:

License

Apache License 2.0 © 2020 zjykzj

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zcls-0.10.1.tar.gz (81.8 kB view details)

Uploaded Source

Built Distribution

zcls-0.10.1-py2.py3-none-any.whl (156.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file zcls-0.10.1.tar.gz.

File metadata

  • Download URL: zcls-0.10.1.tar.gz
  • Upload date:
  • Size: 81.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2.post20210110 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for zcls-0.10.1.tar.gz
Algorithm Hash digest
SHA256 0176ab7377d616457b9ab27ea97af599eeae1cb457e61fa98138a6be5c255204
MD5 8182514d9cb973396ccd012c43eb5ed6
BLAKE2b-256 ee8e55fcf4be60e67f0b468e8122f5d09476e1b2b7801ef846750fdf2914df91

See more details on using hashes here.

File details

Details for the file zcls-0.10.1-py2.py3-none-any.whl.

File metadata

  • Download URL: zcls-0.10.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 156.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2.post20210110 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for zcls-0.10.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1073ffa63e4292a3ae1fd34618496465c71e540f47848da9f13fd5a26c4ce365
MD5 c4fdedbfb601924d9019abaa1fbd0b6f
BLAKE2b-256 a6918d930bd412ec9d12a1e1a61fe1bf196d468b662705911fa2b3587cffeb12

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page