Skip to main content

Object Classification Training/Inferring Framework

Project description

Language: 🇺🇸 🇨🇳

«ZCls» is a classification model training/inferring framework

Documentation Status

Supported Recognizers:

Refer to roadmap for details

Table of Contents

Background

In the fields of object detection/object segmentation/action recognition, there have been many training frameworks with high integration and perfect process, such as facebookresearch/detectron2, open-mmlab/mmaction2 ...

Object classification is the most developed and theoretically basic field in deeplearning. Referring to the existing training framework, a training/inferring framework based on object classification model is implemented. I hope ZCls can bring you a better realization.

Installation

See INSTALL

Usage

How to train, see Get Started with ZCls

Use builtin datasets, see Use Builtin Datasets

Use custom datasets, see Use Custom Datasets

Use pretrained model, see Use Pretrained Model

Maintainers

  • zhujian - Initial work - zjykzj

Thanks

@misc{ding2021diverse,
      title={Diverse Branch Block: Building a Convolution as an Inception-like Unit}, 
      author={Xiaohan Ding and Xiangyu Zhang and Jungong Han and Guiguang Ding},
      year={2021},
      eprint={2103.13425},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{ding2021repvgg,
      title={RepVGG: Making VGG-style ConvNets Great Again}, 
      author={Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun},
      year={2021},
      eprint={2101.03697},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{fan2020pyslowfast,
  author =       {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and
                  Christoph Feichtenhofer},
  title =        {PySlowFast},
  howpublished = {\url{https://github.com/facebookresearch/slowfast}},
  year =         {2020}
}

@misc{zhang2020resnest,
      title={ResNeSt: Split-Attention Networks}, 
      author={Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola},
      year={2020},
      eprint={2004.08955},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{han2020ghostnet,
      title={GhostNet: More Features from Cheap Operations}, 
      author={Kai Han and Yunhe Wang and Qi Tian and Jianyuan Guo and Chunjing Xu and Chang Xu},
      year={2020},
      eprint={1911.11907},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

For more thanks, check THANKS

Contributing

Anyone's participation is welcome! Open an issue or submit PRs.

Small note:

License

Apache License 2.0 © 2020 zjykzj

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zcls-0.10.2.tar.gz (82.3 kB view details)

Uploaded Source

Built Distribution

zcls-0.10.2-py2.py3-none-any.whl (157.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file zcls-0.10.2.tar.gz.

File metadata

  • Download URL: zcls-0.10.2.tar.gz
  • Upload date:
  • Size: 82.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2.post20210110 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for zcls-0.10.2.tar.gz
Algorithm Hash digest
SHA256 d4a9b48e2b82c22ab4ad65d749588d1a07bf089e59d52c8e0575a399a2bedc99
MD5 f299f8bff775ec259db0e0899e64d424
BLAKE2b-256 f0c42a88486c7288107574cf42856c4bf7371fc9c8b1bec36244c877b003af0f

See more details on using hashes here.

File details

Details for the file zcls-0.10.2-py2.py3-none-any.whl.

File metadata

  • Download URL: zcls-0.10.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 157.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2.post20210110 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for zcls-0.10.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 a23cdd868d918d5f6b1772ee080ca805e173bfb0fb6111ac1b7f80c77cd75f8c
MD5 52b5cf178bb7c35cb8f66a796d6527c8
BLAKE2b-256 a385ead2aefe9fbdbfe8473fd7c46bc8fcc29fb0eb360113972d1127f9d78390

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page