Skip to main content

Object Classification Training/Inferring Framework

Project description

Language: 🇺🇸 🇨🇳

«ZCls» is a classification model training/inferring framework

Documentation Status

Supported Recognizers:

Refer to roadmap for details

Table of Contents

Background

In the fields of object detection/object segmentation/action recognition, there have been many training frameworks with high integration and perfect process, such as facebookresearch/detectron2, open-mmlab/mmaction2 ...

Object classification is the most developed and theoretically basic field in deeplearning. Referring to the existing training framework, a training/inferring framework based on object classification model is implemented. I hope ZCls can bring you a better realization.

Installation

See INSTALL

Usage

How to train, see Get Started with ZCls

Use builtin datasets, see Use Builtin Datasets

Use custom datasets, see Use Custom Datasets

Use pretrained model, see Use Pretrained Model

Maintainers

  • zhujian - Initial work - zjykzj

Thanks

@misc{ding2021diverse,
      title={Diverse Branch Block: Building a Convolution as an Inception-like Unit}, 
      author={Xiaohan Ding and Xiangyu Zhang and Jungong Han and Guiguang Ding},
      year={2021},
      eprint={2103.13425},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{ding2021repvgg,
      title={RepVGG: Making VGG-style ConvNets Great Again}, 
      author={Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun},
      year={2021},
      eprint={2101.03697},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{fan2020pyslowfast,
  author =       {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and
                  Christoph Feichtenhofer},
  title =        {PySlowFast},
  howpublished = {\url{https://github.com/facebookresearch/slowfast}},
  year =         {2020}
}

@misc{zhang2020resnest,
      title={ResNeSt: Split-Attention Networks}, 
      author={Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola},
      year={2020},
      eprint={2004.08955},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{han2020ghostnet,
      title={GhostNet: More Features from Cheap Operations}, 
      author={Kai Han and Yunhe Wang and Qi Tian and Jianyuan Guo and Chunjing Xu and Chang Xu},
      year={2020},
      eprint={1911.11907},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

For more thanks, check THANKS

Contributing

Anyone's participation is welcome! Open an issue or submit PRs.

Small note:

License

Apache License 2.0 © 2020 zjykzj

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zcls-0.13.4.tar.gz (84.5 kB view details)

Uploaded Source

Built Distribution

zcls-0.13.4-py2.py3-none-any.whl (173.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file zcls-0.13.4.tar.gz.

File metadata

  • Download URL: zcls-0.13.4.tar.gz
  • Upload date:
  • Size: 84.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for zcls-0.13.4.tar.gz
Algorithm Hash digest
SHA256 33f0870cabe4fcadb59715be2a6caafff1ab0fb155058c178b5dda42b986fd78
MD5 3c9d556b1672186870adf91135b5e373
BLAKE2b-256 d8b19297685e8abbd452316f9c5007d7210948486fe098ad25c79f1144f45af2

See more details on using hashes here.

File details

Details for the file zcls-0.13.4-py2.py3-none-any.whl.

File metadata

  • Download URL: zcls-0.13.4-py2.py3-none-any.whl
  • Upload date:
  • Size: 173.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for zcls-0.13.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 3df850a5e14b343abc1022c5fec693b2994db58514169379a7a513b0bd698c4b
MD5 a007ddac1971d6ed8d870943e9328f65
BLAKE2b-256 00a33b4fd0fb40a1848ed4ec20d329b3b809d29fb5d3b6e20e67ff1be3e7d2f0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page