Skip to main content

Object Classification Training/Inferring Framework

Project description

Language: 🇺🇸 🇨🇳

«ZCls» is a classification model training/inferring framework

Documentation Status

Supported Recognizers:

Refer to roadmap for details

Table of Contents

Background

In the fields of object detection/object segmentation/action recognition, there have been many training frameworks with high integration and perfect process, such as facebookresearch/detectron2, open-mmlab/mmaction2 ...

Object classification is the most developed and theoretically basic field in deeplearning. Referring to the existing training framework, a training/inferring framework based on object classification model is implemented. I hope ZCls can bring you a better realization.

Installation

See INSTALL

Usage

How to train, see Get Started with ZCls

Use builtin datasets, see Use Builtin Datasets

Use custom datasets, see Use Custom Datasets

Use pretrained model, see Use Pretrained Model

Maintainers

  • zhujian - Initial work - zjykzj

Thanks

@misc{ding2021diverse,
      title={Diverse Branch Block: Building a Convolution as an Inception-like Unit}, 
      author={Xiaohan Ding and Xiangyu Zhang and Jungong Han and Guiguang Ding},
      year={2021},
      eprint={2103.13425},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{ding2021repvgg,
      title={RepVGG: Making VGG-style ConvNets Great Again}, 
      author={Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun},
      year={2021},
      eprint={2101.03697},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{fan2020pyslowfast,
  author =       {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and
                  Christoph Feichtenhofer},
  title =        {PySlowFast},
  howpublished = {\url{https://github.com/facebookresearch/slowfast}},
  year =         {2020}
}

@misc{zhang2020resnest,
      title={ResNeSt: Split-Attention Networks}, 
      author={Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola},
      year={2020},
      eprint={2004.08955},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{han2020ghostnet,
      title={GhostNet: More Features from Cheap Operations}, 
      author={Kai Han and Yunhe Wang and Qi Tian and Jianyuan Guo and Chunjing Xu and Chang Xu},
      year={2020},
      eprint={1911.11907},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

For more thanks, check THANKS

Contributing

Anyone's participation is welcome! Open an issue or submit PRs.

Small note:

License

Apache License 2.0 © 2020 zjykzj

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zcls-0.14.0.tar.gz (85.1 kB view details)

Uploaded Source

Built Distribution

zcls-0.14.0-py2.py3-none-any.whl (173.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file zcls-0.14.0.tar.gz.

File metadata

  • Download URL: zcls-0.14.0.tar.gz
  • Upload date:
  • Size: 85.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for zcls-0.14.0.tar.gz
Algorithm Hash digest
SHA256 d6d0d4ceb18a412bc9683ef920a4d6980c5014ebfee723f73d537ba5f6edc256
MD5 3e5b45eabfe2e18c23f1328d265ddaf9
BLAKE2b-256 f30cfde00e96567812510eb03602cebb0c265855be5d845f2c71082c370cf439

See more details on using hashes here.

File details

Details for the file zcls-0.14.0-py2.py3-none-any.whl.

File metadata

  • Download URL: zcls-0.14.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 173.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for zcls-0.14.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b6960a2afa4d2978d025d0bc9ce03602c53e5ed9d19a79586c11dd41a6a7c090
MD5 87db4cd86c3fb5fcbd45db3010c7d6c4
BLAKE2b-256 fb6f76857cb42a5208942f080a8094435cd6b06e62c07b77691df46d8abc7df1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page