Skip to main content

Object Classification Code Base

Project description

Language: 🇺🇸 🇨🇳

«ZCls» is a classification model benchmark code base

Supported Recognizers:

Table of Contents

Background

In order to further improve the algorithm performance, it is usually necessary to improve the existing model, which inevitably involves code refactoring. Creating this repo, on the one hand, serves as the CodeBase of the new model/optimization method, on the other hand, it also records the comparison between the custom model and the existing implementation (such as Torchvision Models)

Maintainers

  • zhujian - Initial work - zjykzj

Thanks

@misc{ding2021repvgg,
      title={RepVGG: Making VGG-style ConvNets Great Again}, 
      author={Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun},
      year={2021},
      eprint={2101.03697},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{fan2020pyslowfast,
  author =       {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and
                  Christoph Feichtenhofer},
  title =        {PySlowFast},
  howpublished = {\url{https://github.com/facebookresearch/slowfast}},
  year =         {2020}
}

@misc{zhang2020resnest,
      title={ResNeSt: Split-Attention Networks}, 
      author={Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola},
      year={2020},
      eprint={2004.08955},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{ding2019acnet,
      title={ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks}, 
      author={Xiaohan Ding and Yuchen Guo and Guiguang Ding and Jungong Han},
      year={2019},
      eprint={1908.03930},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{howard2019searching,
      title={Searching for MobileNetV3}, 
      author={Andrew Howard and Mark Sandler and Grace Chu and Liang-Chieh Chen and Bo Chen and Mingxing Tan and Weijun Wang and Yukun Zhu and Ruoming Pang and Vijay Vasudevan and Quoc V. Le and Hartwig Adam},
      year={2019},
      eprint={1905.02244},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{cao2019gcnet,
      title={GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond}, 
      author={Yue Cao and Jiarui Xu and Stephen Lin and Fangyun Wei and Han Hu},
      year={2019},
      eprint={1904.11492},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

For more thanks, please check THANKS

Contributing

Anyone's participation is welcome! Open an issue or submit PRs.

Small note:

License

Apache License 2.0 © 2020 zjykzj

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zcls-0.2.0.tar.gz (65.2 kB view details)

Uploaded Source

Built Distribution

zcls-0.2.0-py2.py3-none-any.whl (132.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file zcls-0.2.0.tar.gz.

File metadata

  • Download URL: zcls-0.2.0.tar.gz
  • Upload date:
  • Size: 65.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for zcls-0.2.0.tar.gz
Algorithm Hash digest
SHA256 765bf386ae245c3102b67d074d78ef170e4347c3191ec1c3b4683fd62ebb212e
MD5 b5a2aa9e52fd5faf0e4648684a1513b0
BLAKE2b-256 9ea692213cef1d1b99f3b97c203a22f814b67eb27fa1665a3e5f768e3b870260

See more details on using hashes here.

File details

Details for the file zcls-0.2.0-py2.py3-none-any.whl.

File metadata

  • Download URL: zcls-0.2.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 132.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for zcls-0.2.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 3d5f8737bf1c0a0bb7e3ea55479389339f8e633e62d8ebddab9c7166eef005c9
MD5 1953b22d95e5edaface9ec799164344a
BLAKE2b-256 a74f38ceae969bf2f5cd09a9b81efafeb756c2d2e8a33edc82f102377b98b133

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page